

Table of Contents
CoverTable of ContentsTitle PageCopyrightAbout the AuthorsPrefaceAbout the Companion Website1 Why Do We Need Edge Computing?1.1 The Background of the Emergence1.2 The Evolutionary History1.3 What Is Edge Computing?1.4 Summary and PracticeChapter 1 Suggested PapersReferences2 Fundamentals of Edge Computing2.1 Distributed Computing2.2 The Basic Concept and Key Characteristics ofEdge Computing2.3 Edge Computing vs. Cloud Computing2.4 Summary and PracticeChapter 2 Suggested PapersReferences3 Architecture and Components of Edge Computing*3.1 Edge Infrastructure3.2 Edge Computing Models

clbr://internal.invalid/book/OPS/cover.xhtml

3.3 Networking in Edge Computing3.4 Summary and PracticeChapter 3 Suggested PapersReferencesNote4 Toward Edge Intelligence*4.1 What Is Edge Intelligence?4.2 Hardware and Software Support4.3 Technologies Enabling Edge Intelligence4.4 Edge Intelligent System Design andOptimization4.5 Summary and PracticeChapter 4 Suggested PapersReferencesNote5 Challenges and Solutions in Edge Computing*5.1 Programmability and Data Management5.2 Resource Allocation and Optimization5.3 Security, Privacy, and Service Management5.4 Deployment Strategies and Integration5.5 Foundations and Business Models5.6 Summary and PracticeChapter 5 Suggested PapersReferencesNote6 Future Trends and Emerging Technologies*6.1 Edge Computing and New Paradigm6.2 Integration with Artificial Intelligence

6.3 6G and Edge Computing6.4 Edge Computing in Space Exploration6.5 Summary and PracticeChapter 6 Suggested PapersReferencesNote7 Case Studies and Practical Applications*7.1 Manufacturing7.2 Telecommunications7.3 Healthcare7.4 Smart Cities7.5 Internet of Things7.6 Retail7.7 Autonomous Vehicles7.8 Summary and PracticeChapter 7 Suggested PapersReferencesNote8 Privacy and Bias in Edge Computing*8.1 Privacy in Edge Computing8.2 Accessibility and Digital Divide8.3 Summary and PracticeChapter 8 Suggested PapersReferencesNote9 Conclusion and Future Directions9.1 Key Insights and Conclusions9.2 So, What Is Next?

IndexEnd User License Agreement
List of Tables

Chapter 2Table 2.1 Edge computing vs. cloud computing.Chapter 4Table 4.1 Comparison of hardware types for edgeAI applications: performance...Chapter 5Table 5.1 Technical challenges in edge computing.Chapter 6Table 6.1 Relationship of different computingparadigms to edge computing.Table 6.2 Model parameter scales.Table 6.3 Comparison of satellites in different orbit.Chapter 8Table 8.1 Original dataset.Table 8.2 Anonymized dataset with 2‐anonymity.
List of Illustrations

Chapter 1Figure 1.1 The increase of data pushes theevolution of edge computing.Figure 1.2 Number of publications searched bykeyword “edge computing” and “...

Figure 1.3 The evolution of edge computing andkey milestones.Figure 1.4 “Edge computing” and “fog computing”trends.Figure 1.5 Edge computing paradigm.Figure 1.6 Edge computing is a continuum.Figure 1.7 “Edge computing” and “edge AI” trends.Chapter 2Figure 2.1 Traditional cloud computing model.Figure 2.2 Edge computing model characteristics.Figure 2.3 Round trip time between client andedge/cloud.Figure 2.4 Bandwidth between client andedge/cloud.Figure 2.5 Round trip time for processing audiocommand on edge and cloud.Chapter 3Figure 3.1 Three layers of edge.Figure 3.2 “MEC” and “cloudlet computing.”Figure 3.3 Edge‐to‐edge collaboration.Figure 3.4 Edge‐to‐device collaboration.Figure 3.5 Edge‐to‐cloud collaboration.Figure 3.6 Cloud‐edge‐device collaboration.Figure 3.7 Edge computing and networking.Figure 3.8 The architectural framework for edgecomputing‐network integratio...Chapter 4

Figure 4.1 Motivation of edge intelligence.Figure 4.2 Dataflow of edge intelligence.Figure 4.3 Edge intelligence.Figure 4.4 TPU.Figure 4.5 VPU.Figure 4.6 Jetson Nano.Figure 4.7 TrueNorth chip.Figure 4.8 FPGA.Figure 4.9 Nvidia AGX Xavier.Figure 4.10 Container.Figure 4.11 Overview of pruning.Figure 4.12 Overview of quantization.Figure 4.13 Overview of quantization‐awaretraining (QAT).Figure 4.14 Overview of post‐training quantization(PTQ).Figure 4.15 Overview of knowledge distillation.Figure 4.16 Overview of hardware‐softwarecodesign.Figure 4.17 The framework of CLONE. The CLONEframework operates by allowing...Figure 4.18 An overview of the TensorRT‐enabledframework, which integrates ...Figure 4.19 A depiction of the collaborativeinference pipeline for the mult...Chapter 5Figure 5.1 Edge computing paradigm.

Figure 5.2 The naming mechanism for the edgeoperating system (edgeOS).Figure 5.3 Data abstraction in edge computingscenarios.Figure 5.4 Offloading framework in edge computingscenarios for vehicle‐edge...Figure 5.5 The design of ChatCache.Figure 5.6 Storage system architecture.Figure 5.7 An example of function consolidationand deduplication. Each edge...Chapter 6Figure 6.1 Possible sky computing architecture.Figure 6.2 Problems of existing computingparadigms. Figure 6.3 Problems of existing computingparadigms. Figure 6.4 A hierarchical network slicingarchitecture. Figure 6.5 Architecture of multi‐access edgelearning‐based offloading (MELO...Figure 6.6 Kodan architecture design. Chapter 7Figure 7.1 A taxonomy of edge computingapplications.Figure 7.2 Edge computing in manufacturing.Figure 7.3 Edge computing in telecommunications.Figure 7.4 Edge computing in healthcare.

Figure 7.5 High‐level view of an IoT‐based smartcity.Figure 7.6 High‐level view of an IoT‐based smartretail.Figure 7.7 High‐level view of edge computing forautonomous vehicles.Chapter 8Figure 8.1 Privacy forms.Figure 8.2 An example of homomorphic encryption.Figure 8.3 Federated learning.

IEEE Press445 Hoes LanePiscataway, NJ 08854

IEEE Press Editorial BoardSarah Spurgeon, Editor‐in‐Chief
Moeness AminJón AtliBenediktssonAdam DrobotJames DuncanHugo EnriqueHernandezFigueroa

EkramHossainBrianJohnsonHai LiJamesLykeJoydeepMitraAlbertWang

DesineniSubbaramNaiduYi QianTony QuekBehzad RazaviThomasRobertazziPatrick ChikYue

Edge Computing
Systems and Applications
Lanyu XuDepartment of Computer Science and EngineeringOakland University, RochesterMichigan, United States
Weisong ShiDepartment of Computer and Information SciencesUniversity of Delaware, NewarkDelaware, United States

Copyright © 2025 by The Institute of Electrical and Electronics Engineers, Inc.All rights reserved.Published by John Wiley & Sons, Inc., Hoboken, New Jersey.Published simultaneously in Canada.No part of this publication may be reproduced, stored in a retrieval system, ortransmitted in any form or by any means, electronic, mechanical, photocopying,recording, scanning, or otherwise, except as permitted under Section 107 or108 of the 1976 United States Copyright Act, without either the prior writtenpermission of the Publisher, or authorization through payment of theappropriate per‐copy fee to the Copyright Clearance Center, Inc., 222Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, oron the web at www.copyright.com. Requests to the Publisher for permissionshould be addressed to the Permissions Department, John Wiley & Sons, Inc.,111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, oronline at http://www.wiley.com/go/permission.The manufacturer's authorized representative according to the EU GeneralProduct Safety Regulation is Wiley‐VCH GmbH, Boschstr. 12, 69469 Weinheim,Germany, e‐mail: Product_Safety@wiley.com.Trademarks: Wiley and the Wiley logo are trademarks or registered trademarksof John Wiley & Sons, Inc. and/or its affiliates in the United States and othercountries and may not be used without written permission. All othertrademarks are the property of their respective owners. John Wiley & Sons, Inc.is not associated with any product or vendor mentioned in this book.Limit of Liability/Disclaimer of Warranty: While the publisher and author haveused their best efforts in preparing this book, they make no representations orwarranties with respect to the accuracy or completeness of the contents of thisbook and specifically disclaim any implied warranties of merchantability orfitness for a particular purpose. No warranty may be created or extended bysales representatives or written sales materials. The advice and strategiescontained herein may not be suitable for your situation. You should consultwith a professional where appropriate. Further, readers should be aware thatwebsites listed in this work may have changed or disappeared between whenthis work was written and when it is read. Neither the publisher nor authorsshall be liable for any loss of profit or any other commercial damages, includingbut not limited to special, incidental, consequential, or other damages.For general information on our other products and services or for technicalsupport, please contact our Customer Care Department within the UnitedStates at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax(317) 572‐4002.Wiley also publishes its books in a variety of electronic formats. Some contentthat appears in print may not be available in electronic formats. For moreinformation about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging‐in‐Publication Data Applied for

http://www.copyright.com/
http://www.wiley.com/go/permission
mailto:Product_Safety@wiley.com
http://www.wiley.com/

Hardback ISBN: 9781394285839Cover Design: WileyCover Image: © VectorMine/stock.adobe.com

https://stock.adobe.com/

About the Authors
Lanyu Xu is currently an Assistant Professor of ComputerScience and Engineering at Oakland University. Dr. Xuleads the Edge Intelligence Systems Lab. Her researchintersects edge computing and deep learning, emphasizingthe development of efficient edge intelligence systems. Herwork explores optimization frameworks, intelligentsystems, and AI applications to address challenges inefficiency and real‐world applicability of edge systemsacross various domains.
Weisong Shi is an Alumni Distinguished Professor andDepartment Chair of Computer and Information Sciences atthe University of Delaware (UD). Dr. Shi leads theConnected and Autonomous Research (CAR) Laboratory.He is an internationally renowned expert in edgecomputing, autonomous driving, and connected health. Hispioneer paper, “Edge Computing: Vision and Challenges,”has been cited over 8000 times. He is the Editor‐in‐Chief of
IEEE Internet Computing Magazine and the foundingsteering committee chair of several conferences, includingthe ACM/IEEE Symposium on Edge Computing (SEC),IEEE/ACM International Conference on Connected Health(CHASE), and the IEEE International Conference onMobility (MOST). He is a fellow of IEEE and a distinguishedmember of Association for Computing Machinery (ACM).

Preface
Over the past decade, edge computing's rapid evolution hasfundamentally transformed how data is processed, stored,and utilized across multiple industry sectors, such as smartmanufacturing, healthcare, smart cities, andtransportation. As a critical enabler of technologies such asthe Internet of Things (IoT), autonomous systems, and real‐time analytics, edge computing has progressed from anascent concept to widespread adoption. Despite thisremarkable growth, there remains a lack of educationalresources dedicated to equipping the next generation of theworkforce with the knowledge and skills needed to advanceedge computing further.This book was motivated to address that gap, offering acomprehensive introduction to edge computing's principles,architectures, applications, and challenges. It aims toprovide readers, ranging from students to professionals,with a solid foundation in edge computing, enabling themto understand its current state, tackle its challenges, anddrive its development. By bridging theory and practice, thisbook aspires to inspire innovation, foster collaboration, andpromote growth in this rapidly evolving field.Designed as both a textbook and a reference guide, thisbook includes practice questions, course projects, andcurated reading materials for each chapter to enhancelearning. Readers with diverse interests and goals cannavigate directly to the chapters most relevant to them,making the book a flexible resource for students,educators, researchers, and professionals alike.The book is structured into nine chapters. Chapter 1introduces the importance of edge computing, providing its

background and evolutionary history. Chapter 2 lays thegroundwork, covering fundamental principles, models, andtechnologies that underpin edge computing. Chapter 3delves into the architecture and components of edgecomputing, including infrastructure and collaborativemodels. Chapter 4 transitions into edge intelligence byhighlighting the integration of artificial intelligence withedge computing. Chapter 5 addresses key challenges suchas programmability, resource optimization, and security,while proposing potential solutions. Chapter 6 looks to thefuture, discussing emerging paradigms like sky computing,6G, and edge computing in space exploration. Chapter 7provides practical insights through real‐world case studies,illustrating edge computing's impact on industries such asmanufacturing, healthcare, smart cities, and more. Chapter8 examines privacy concerns and the digital divide,exploring biases, their impacts, and mitigation strategies inedge computing. Chapter 9 concludes the book.This endeavor would not have been possible without theunwavering dedication and expertise of the team behindthis book. We are deeply grateful to the contributors,editors, and reviewers whose insights and hard workshaped this book. In particular, we extend our heartfeltthanks to Dr. Haihua Chen (University of North Texas), Dr.Shihong Hu (Hohai University), Dr. Sidi Lu (William &Marry), Dr. Kewei Sha (University of North Texas), Dr.Qingyang Zhang (Anhui University), Dr. Xingzhou Zhang(Chinese Academy of Science), and PhD students KomalaSubramanyam Cherukuri (University of North Texas),Yuankai He (University of Delaware), Shaibal Saha(Oakland University), Qiren Wang (University of Delaware),Yichen Xia (University of Delaware), and Yongtao Yao(University of Delaware).To all the readers, we hope you enjoy reading the book andfind the book serves as both a resource and an inspiration

as you explore the exciting world of edge computing. January,2025                  Lanyu XuRochester,United States
Weisong ShiNewark, UnitedStates

About the Companion Website
This book is accompanied by a companion website:
www.wiley.com/go/xu/computing  This website contains the PowerPoint slides for eachchapter.

http://www.wiley.com/go/xu/computing

1
Why Do We Need Edge Computing?
What is edge computing? Why did it become popular afterbeing proposed? What are the relationships between edgecomputing and IoT/Cloud Computing? In this chapter, wewill answer these three questions by introducing thebackground, the evolutionary history, and the concept ofedge computing.
1.1 The Background of the
EmergenceTo answer the question of this chapter, let us trace back towhen edge computing was proposed, back to the big dataera when the Internet of Things (IoT) and cloud computingwere blooming.The IoT technology [3] aims to connect physical objects tothe Internet according to the communication protocols ofIoT, utilizing technologies such as RFID (radio frequencyidentification), wireless data communication, and GPS(global positioning system). This enables informationexchange for intelligent identification, positioning,tracking, monitoring, and management of Internetresources. IoT has significantly expanded with theadvancement of computer and network communicationtechnologies. It now encompasses the integration of almostall information technologies with computer and networktechnologies, facilitating real‐time data sharing betweenobjects and achieving intelligent real‐time data collection,transmission, processing, and execution. The concept of“computer information perception without human

intervention” has gradually been applied to fields such aswearable devices, smart homes, environmental sensing,intelligent transportation systems, and smartmanufacturing [18, 36]. Key technologies involved in IoTinclude:
Sensor Technology: This involves acquiringinformation from natural sources, processing(transforming), and identifying it. Sensor technology isa critical aspect of computer applications, as it senses(or responds to) and detects specific information fromthe measured object, converting it into output signalsaccording to certain rules.
RFID Technology: This comprehensive technologyintegrates radio frequency and embedded technologiesto automatically identify target objects and obtainrelated data through radio frequency signals. Theidentification process does not require humanintervention and can operate in various harshenvironments, with promising and broad applications inautomatic identification, logistics management, andmore.
Embedded System Technology: This is a complextechnology that integrates computer hardware andsoftware, sensor technology, integrated circuittechnology, and electronic application technology. Overthe decades, intelligent terminal productscharacterized by embedded systems have becomeubiquitous, ranging from smartwatches to aerospacesatellite systems. Embedded systems are transformingpeople's lives, driving industrial production, andadvancing the defense industry. If we make a simpleanalogy of the IoT to the human body, sensors are akinto human senses like eyes, nose, and skin; the networkis the nervous system transmitting information, and the

embedded system is the brain that classifies andprocesses the received information.
Later on, with the rapid development of IoT and thewidespread adoption of 4G/5G wireless networks, the eraof the Internet of Everything (IoE) [11] has arrived. Ciscointroduced the concept of IoE in December 2012. Itrepresents a new network architecture for future Internetconnectivity and the evolution of IoT, enhancing thenetwork's intelligent processing and security features. IoEemploys a distributed structure, integrating application‐centric networks, computing, and storage on a newplatform. It is driven by IP settings, global higherbandwidth access, and IPv6, supporting hundreds ofmillions of edge terminals and devices connected to theInternet. Compared to IoT, IoE not only involves “thing‐to‐thing” connections, but also introduces a higher level of“human‐to‐thing” connectivity. Its distinguishing feature isthat any “thing” will possess contextual awareness,enhanced computing capabilities, and sensing abilities.Integrating humans and information into the Internet, thenetwork will have billions or even trillions of connectednodes. The IoE is built on the physical network, enhancingnetwork intelligence to achieve integration, coordination,and personalization among the “things” on the internet.Application services based on the IoE platform requireshorter response times and will generate a large amount ofdata involving personal privacy. For example, sensors andcameras installed on autonomous vehicles capture roadcondition information in real time; one car with fivecameras can generate more than 24 terabytes (TB) dataper day [17]. According to the Insurance Institute forHighway Safety, there will be 3.5 million self‐drivingvehicles on U.S. roads by 2025 and 4.5 million by 2030[21]. The Boeing‐787 generates about 5 gigabytes (GB) of

data per second and requires real‐time processing of thedata. In Beijing, China, the electric vehicle monitoringplatform can provide continuous ‐hour real‐timemonitoring for 10,000 electric vehicles and forward data tovarious enterprise platforms at a rate of one data pointevery 10 seconds per vehicle. In terms of social security,the United States has deployed over 30 million surveillancecameras, generating more than 4 billion hours of video dataeach week. China's “Skynet” surveillance network, used forcrime prevention, has installed over 20 million high‐definition surveillance cameras nationwide, monitoring andrecording pedestrians and vehicles in real time.Since the concept was proposed in 2005, cloud computinghas been widely applied, changing how people work andlive. SaaS (Software as a Service) is commonly used in datacenters of major IT companies like Google, Twitter,Facebook, and Baidu. Scalable infrastructure andprocessing engines supporting cloud services havesignificantly impacted application services such as GoogleFile System (GFS), MapReduce programming model,Hadoop (a distributed system developed by ApacheFoundation), and Spark (the in‐memory computingframework designed by the AMP Lab at the University ofCalifornia Berkeley). However, in the context of IoT andsimilar applications, data is geographically dispersed anddemands higher response times and security. Althoughcloud computing provides an efficient platform for big dataprocessing, the network bandwidth growth rate cannotkeep up with the data growth rate. The cost reduction rateof network bandwidth is much slower than that ofhardware resources like CPU and memory, and thecomplex network environment makes it challenging tosignificantly improve network latency. Therefore, thetraditional cloud computing model will struggle to supportapplication services based on IoE efficiently and in real

time, requiring solutions to address the bandwidth andlatency bottlenecks.With the rapid development and widespread application ofthe IoE, edge devices are transitioning from primarilyserving as data consumers to serving as both dataproducers and consumers. Simultaneously, network edgedevices are gradually capable of utilizing the collected real‐time data for pattern recognition, predictive analysis oroptimization, and intelligent processing. In the edgecomputing model, computing resources are closer to thedata source, and network edge devices now have sufficientcomputational power to process the raw data locally andsend the results to the cloud computing center locally. Theedge computing model not only reduces the bandwidthpressure in network transmission, speeding up dataanalysis and processing, but also lowers the risk of privacyleaks for sensitive terminal data.Currently, big data processing is shifting from thecentralized processing era centered on cloud computing(we refer to the years from 2005 to 2015 as the centralizedbig data processing era) to the edge computing eracentered on the IoE (we refer to it as the edge‐based bigdata processing era). During the centralized big dataprocessing era, the focus was more on centralized storageand processing of big data, achieved by building cloudcomputing centers and leveraging their powerfulcomputing capabilities to solve computational and storageissues centrally. In contrast, in the edge‐based big dataprocessing era, network edge devices generate massivereal‐time data. In 2018, Cisco's Global Cloud Indexestimated that nearly 850 zettabytes (ZB) will be generatedby all people, machines, and things by 2021. Yet onlyaround 10% is classed as useful data; useful data ispredicted to four times exceed data center traffic (21 ZBper year) [10]. From 2018 to 2023, the average number of

devices owned per person worldwide increased from 2.4 to3.6. Specifically, in North America, on average, one personowned eight devices in 2018 and 13 devices in 2023 [38].According to Statista, the number of IoT devices connectedto the network was 15.14 billion in 2023 and will reach29.42 billion in 2030 [35]. This mismatch between dataproducing and data consuming requires the emergence ofan alternation for cloud‐based data centers. Instead ofpurely relying on cloud computing, data can be stored,processed, and analyzed at the network edge. These edgedevices will be deployed on edge computing platformssupporting real‐time data processing, providing users withnumerous service or function interfaces, which users caninvoke to obtain the necessary edge computing services.Therefore, the linearly growing centralized cloudcomputing capacity can no longer match the exponentialgrowth of massive edge data. Single computing resourcesbased on the cloud computing model can no longer meetthe demands for real‐time processing, security, and lowenergy consumption in big data processing. Based on theexisting centralized big data processing centered on thecloud computing model, there is an urgent need for edgebig data processing technology centered on the edgecomputing model to handle the vast edge data. The twocomplement each other, applied to big data processing atboth the cloud center and the edge end, addressing theinadequacies of cloud computing services in the IoE era.When observing the data explosion in three dimensions:velocity, variety, and volume, we will find that theemergence and rapid development of edge computing isinevitable (Figure 1.1). The cloud‐centralized computingparadigm performs well when the data is generated with aconfined speed, size, and format. While in the IoE era, datais increasingly produced at the network's edge regardingvelocity, variety, and volume. In terms of variety, different

types of data (e.g., text, audio, and photo) are generatedevery day and every second from numerous devices (e.g.,IoT, web browser, camera, and social media). These dataare generated with different velocities (e.g., real time, nearreal time, periodic, and batch generated). Therefore,storage and process requirements for these data will bedifferent. With the tremendous number of devices and thefrequent speed of data generation, there is no surprise thatthe volume of data generated is increasing dramatically.Megabytes (MB) and TB have become the typical units. Infact, as of 2024, the amount of data generated per day isaround 328.77 million TB, which equals 0.33 ZB [13]. Giventhese factors, relying purely on the cloud for all dataprocessing is impossible. This is not just because of thecomputing pressure brought to the cloud computationcenter but also because the bandwidth capability requiredfor transmitting this amount of data is challenging. Theonly solution to process the data reliably and in a timelymanner is edge computing, which ensures a shorterresponse time, more efficient processing, and smallernetwork pressure.

Figure 1.1 The increase of data pushes the evolution ofedge computing.Compared to cloud computing, edge computing can bettersupport mobile computing and IoT applications, offeringthe following distinct advantages:
Greatly Alleviates Network Bandwidth and Data
Center Pressure: With the development of IoT, globaldevices will generate massive amounts of data.However, only a small portion of this data is critical,while most of it is temporary and does not need long‐term storage (the amount of data generated by devicesis two orders of magnitude higher than the amount ofdata that needs to be stored). Edge computing can fullyutilize geographically distributed network edges toprocess a large amount of temporary data, therebyreducing the pressure on network bandwidth and datacenters.
Enhances Service Responsiveness: The inherentlimitations of mobile devices in computing, storage, andpower resources are evident. Cloud computing canprovide services to mobile devices to address thesedeficiencies. However, network transmission speeds

are constrained by the development of communicationtechnologies, and in complex network environments,issues such as unstable connections and routing furtherexacerbate latency, jitter, and slow data transmissionspeeds, severely affecting the responsiveness of cloudservices. Edge computing offers services near the user,ensuring low network latency through proximity andreducing network jitter with more straightforwardrouting. With the development of 5G and 6G, thediverse application scenarios and differentiated servicerequirements pose challenges to 5G/6G networksregarding throughput, latency, number of connections,and reliability. Edge computing and 5G/6Gtechnologies complement each other, with edgecomputing leveraging localization, proximity, and lowlatency to drive 5G/6G architectural changes, while5G/6G technology is essential for reducing datatransmission latency and enhancing serviceresponsiveness in edge computing systems.
Protects Privacy Data and Enhances Data
Security: Data security has always been a critical issuein IoT applications. Surveys show that approximately86% of the U.S. general population is concerned aboutdata privacy [23]. In the cloud computing model, alldata and applications are stored in data centers,making it difficult for users to have fine‐grained controlover data access and usage. Edge computing providesthe infrastructure for storing and using critical privacydata, restricting the operation of privacy data withinfirewalls and thereby enhancing data security (for moredetailed information, see Chapter 8).

1.2 The Evolutionary HistoryThe field of edge computing has developed rapidly since2014. We categorize the development process into threestages: technology preparation period, rapid growth period,and steady development period. We use “edge computing”as the keyword to search the number of articles publishedper year in Google Scholar. As shown in Figure 1.2, before2015, edge computing was in the technology preparationperiod. Since 2015, the number of papers related to “edgecomputing” has grown tenfold. Edge computing hasentered a rapid growth period. The number of papers hasbeen increasing and reaching a steady development periodsince 2020. In this period, the development is focused onintegrating academia and industry, bringing the productinto the business, and finally facilitating peoples' dailylives. Figure 1.3 illustrates typical events in thedevelopment process of edge computing.The development of edge computing is closely linked to theevolution of data‐oriented computing models. As the scaleof data increases, the demand for performance and energyefficiency in data processing continues to grow. To addressthe issues of computational load and data transmissionbandwidth in data transfer, computation, and storageprocesses, researchers explored ways to enhance data‐processing capabilities near data sources even before theadvent of edge computing. This involves shiftingcomputational tasks from centralized computing centers tothe network edge. The main typical models includedistributed database models, peer‐to‐peer (P2P) computingmodels, content delivery network (CDN) models, mobileedge computing models, fog computing models, and cloud‐sea computing models. We will explain these differentmodels in the order of their emergence and also introducethe history of edge computing.

Figure 1.2 Number of publications searched by keyword“edge computing” and “edge intelligence.”

Figure 1.3 The evolution of edge computing and keymilestones.
1.2.1 Technology Preparation PeriodDuring the technology preparation period, edge computingwent through the development process of dormancy,presentation, definition, and generalization.
1.2.1.1 Distributed Database ModelsThe distributed database model results from combiningdatabase technology and network technology. In the era ofbig data, the growth in the variety and quantity of data hasmade distributed databases a core technology for datastorage and processing. Distributed databases are deployed

on self‐organizing network servers or dispersed across theInternet, enterprise networks, Internet, and otherindependent computers in self‐organizing networks. Data isstored on multiple machines, and operations are not limitedto a single machine but allow transactions to be executedacross multiple machines to improve database accessperformance.Distributed databases have become a core technology forbig data processing. Based on their structure, distributeddatabases include homogeneous and heterogeneoussystems. The former has database instances running inenvironments with the same software and hardware,featuring a single‐access interface. The latter operates inenvironments where hardware, operating systems,database management systems, and data models vary.Based on the types of data processed, distributed databasesmainly include relational (such as Structured QueryLanguage, SQL), nonrelational (such as NoSQL), extensiblemarkup language (XML)‐based, and NewSQL distributeddatabases. Among these, NoSQL and NewSQL distributeddatabases are the most widely used [16]. NoSQLdistributed databases, designed to meet the demands forhigh concurrency, efficient storage access, high reliability,and scalability in big data environments, are divided intokey‐value stores, column stores, document‐orienteddatabases, and graph databases. NewSQL distributeddatabases, characterized by real‐time processing, complexanalysis, and fast querying, are relational distributeddatabases designed for massive data storage in big dataenvironments, including Google Spanner, Clustrix, andVoltDB. SQL‐distributed databases are relationaldistributed databases, with typical examples includingMicrosoft's and Oracle's distributed databases. XML‐baseddistributed databases mainly store data in XML format and

are essentially document‐oriented, similar to NoSQLdistributed databases [22].Compared to edge computing models, distributeddatabases provide data storage in big data environmentsbut pay less attention to the heterogeneous computing andstorage capabilities of the devices they reside on, focusingmainly on achieving distributed data storage and sharing.Distributed database technology requires significant spaceand offers lower data privacy. For distributed transactionprocessing across multiple databases, data consistencytechnology is a major challenge for distributed databases[14]. In edge computing models, data resides on edgedevices, offering higher privacy, reliability, and availability.In the era of the IoE, “heterogeneous edge architecturesand the need to support multiple application services” willbecome the fundamental approach for edge computingmodels to handle big data processing.
1.2.1.2 Peer‐to‐Peer (P2P) Computing ModelsP2P computing [27] is one of the early file transfertechnologies that pushed computing to the edge of thenetwork. The term P2P was first introduced in 2000 toimplement file‐sharing systems. Since then, it has graduallydeveloped into an important subfield of distributedsystems. The key research topics in P2P models includedecentralization, maximizing scalability, tolerance of high‐level node churn, and preventing malicious behavior. Majorachievements in this field include:

Distributed Hash Table (DHT), which later evolved intothe general paradigm for key‐value distributed storagein cloud computing models.Generalized gossip protocols, which have been widelyused for complex task processing applications beyond

simple information dissemination, such as data fusionand topology management.Multimedia streaming technology, in forms such asvideo on demand, real‐time video, and personalcommunication.
However, widespread media coverage of P2P being usedfor illegal file sharing and related lawsuits has hindered thepractical recognition of some commercial technologiesbased on the P2P model.The edge computing model bears significant similarities toP2P technology, while it expands on the latter with newtechnologies and methods, extending the concept of P2P tonetwork edge devices. This represents a fusion of P2Pcomputing and cloud computing.
1.2.1.3 Content Delivery Network (CDN) ModelsCDN [29] was proposed by Akamai in 1998. CDN is anInternet‐based caching network, which relies on cachingservers deployed in different places and points users'access to the nearest caching server through loadbalancing, content distribution, scheduling, and otherfunctional modules of the central platform. Therefore, CDNcan reduce network congestion and improve user accessresponse speed and hit rate. It has gained significantattention from both academia and industry since it wasproposed. Companies like Amazon [2] and Akamai [1]possess mature CDN technologies that provide users withthe expected performance and experience while reducingthe operational pressures on service providers.Active content distribution networks (ACDNs), animprovement over traditional CDNs, help content providersavoid the hassle of predicting the preconfiguring resourcesand determining their locations [30]. ACDN allows

applications to be deployed on any server and uses newlydesigned algorithms to replicate and migrate applicationsbetween servers as needed.The concept of edge computing can be traced back toaround the year 2000, when CDNs were deployed largescale. At that time, major companies like Akamaiannounced the distribution of web‐based content throughCDN edge servers. The primary goal of this method was tobenefit from the short distances and available resources ofCDNs to achieve large‐scale scalability. In the early days ofedge computing, the “edge” was limited to CDN cacheservers distributed around the world. However, today'sdevelopment of edge computing has far exceeded the scopeof CDNs. The “edge” in the edge computing model is notconfined to edge nodes; it includes any computational,storage, and networking resources along the path fromdata sources to cloud computing centers.
1.2.1.4 Function Cache and CloudletTo enable static content distribution, CDN emphasizes thebackup and caching of data, while edge computing focusesmore on function caching to improve computationalcapabilities. Function cache was proposed by Ravi et al.[31], where it is applied to personalized mailboxmanagement services to save latency and bandwidth.Satyanarayanan et al. [33] introduced the concept ofCloudlet, which is a trusted, small‐scale, and resource‐richhost, located at the edge of the network, connected to theInternet, and can be accessed by mobile devices to provideservices. Cloudlet is also known as “small cloud” as it canprovide services for users, similar to the cloud server. Atthis point, edge computing focused on the downstreamtransfer of functions from cloud servers to edge servers,aiming to reduce bandwidth usage and minimize delays.

1.2.1.5 Mobile Edge ComputingThe development of the IoE has enabled theinterconnection of numerous types of devices, such assmartphones, tablets, wireless sensors, and wearabledevices. However, the limited energy and computingresources of most network edge devices make the design ofIoE particularly challenging. Mobile edge computing (MEC)[19] is a new network architecture that providesinformation technology services and cloud computingcapabilities within the proximity of the mobile user'swireless access network. It has become a standardized andregulated technology. In 2014, the EuropeanTelecommunications Standards Institute (ETSI) introducedthe standardization of the term MEC, highlighting thatMEC provides a new ecosystem and value chain. UtilizingMEC, intensive mobile computing tasks can be offloaded tonearby network edge servers. Because MEC is locatedwithin the wireless access network and close to mobileusers, it can achieve lower latency and higher bandwidth,thereby improving service quality and user experience.MEC is also a key technology in the development of 5G,helping to meet the high standards of 5G in terms oflatency, programmability, and scalability. By deployingservices and caches at the network edge, MEC reducescongestion in the core network and efficiently responds touse requests.Task migration is one of the challenges in mobilecomputing technology, particularly in environments wherecontinuous service availability and seamless userexperience are crucial. The process involves transferringongoing tasks from one computational node to another,which can be triggered by various factors such as devicemobility, energy conservation needs, or load balancingrequirements. Effective task migration must minimizelatency, avoid data loss, and maintain application state

continuity, which is challenging due to the heterogeneousand dynamic nature of mobile environments. Furthermore,ensuring security during data transfer, managing theenergy consumption of mobile devices, and dealing withfluctuating network conditions are additional hurdles thatneed optimization solutions. As mobile computing continuesto evolve, developing robust, efficient, and secure taskmigration mechanisms will be critical to fully leveragingthe potential of mobile platforms. MEC has been applied invarious scenarios, such as vehicular networks, IoTgateways, auxiliary computing, intelligent videoacceleration, and mobile big data analysis.MEC emphasized the establishment of edge serversbetween the cloud server and edge devices to processcomputing. However, mobile edge nodes are generallyconsidered to lack computing capabilities. In contrast, thenodes in the edge computing model possess strongcomputing capabilities. Therefore, MEC resembles thearchitecture and hierarchy of an edge computing server,functioning as an important part of edge computing.
1.2.1.6 Fog ComputingCisco introduced fog computing in 2012 and defined fogcomputing as a highly virtualized computing platform formigrating cloud computing center tasks to network edgedevices [7]. Fog computing provides computing, storage,and network services between end devices and traditionalcloud computing centers, complementing cloud computing.Vaquero and Rodero‐Merino [39] have provided acomprehensive definition of fog computing, which extendscloud‐based network architecture by introducing anintermediate layer between the cloud and mobile devices.This intermediate layer, known as the fog layer, consists offog servers deployed at the network edge. Fog computingreduces the need for multiple communications between the

cloud computing center and mobile users. It relieves thebandwidth load and energy consumption pressure of mainlinks by reducing the number of communications betweencloud computing centers and mobile users. When there is alarge volume of mobile users, they can access cachedcontent and request specific services from the fogcomputing servers. Additionally, fog computing servers caninterconnect with cloud computing centers, leveragingtheir powerful computational capabilities and extensiveapplications and services.The concepts of edge computing and fog computing havegreat similarities and often represent the same idea. If weare to distinguish between the two, this book posits thatedge computing, in addition to focusing on infrastructure,also pays attention to edge devices and places moreemphasis on the design and implementation of edgeintelligence. In contrast, fog computing focuses more onthe management of back‐end distributed shared resources.As shown in Figure 1.4, since 2017, the level of attention toedge computing has gradually surpassed that of fogcomputing, and its attention continues to rise.

Figure 1.4 “Edge computing” and “fog computing” trends.

1.2.1.7 Cloud‐Sea ComputingIn the context of IoE, the amount of data to be processedwill reach ZB levels. The sensing, transmission, storage,and processing capabilities of information systems need tobe correspondingly enhanced. To address this challenge, in2012, the Chinese Academy of Sciences launched a ten‐year strategic priority research initiative called the NextGeneration Information and Communication Technology(NICT) initiative. Its main purpose is to carry out researchon the “Cloud‐Sea Computing System Project” [40]. It aimsto augment cloud computing by cooperation andintegration of the “cloud computing” system and the “seacomputing” system. “Sea” refers to an augmented client‐side consisting of human‐facing and physical world‐facingdevices and subsystems. The research focuses on proposingsystem‐level solutions from perspectives such as overallsystem architecture, data center and server and storagesystem layers, and processor chip level.Cloud‐sea computing focuses on the two ends “sea” and“cloud” while edge computing focuses on the data pathbetween “sea” and “cloud.” Cloud‐sea computing is a greatsubset example of edge computing.
1.2.2 Rapid Growth PeriodSince 2015, edge commuting has been in a rapid growthperiod, attracting intensive close attention from academiaand industry.At the government level, in May 2016, the National ScienceFoundation (NSF) listed edge computing as one of thehighlighted areas in the research of computer systems. InAugust 2016, NSF and Intel formed a partnership ininformation center networks in wireless edge networks(ICN‐WEN) [37]. In October 2016, the NSF held the NSFWorkshop on Grand Challenges in edge computing [8]. The

workshop focused on three topics: the vision of edgecomputing in the next five to ten years, the grandchallenges to achieving the vision, and the bestmechanisms for academia, industry, and the government toattack these challenges in a cooperative way. This indicatesthat the development of edge computing has attractedgreat attention at the government level.In academia, a formal definition of edge computing is givenin the paper Edge computing: vision and challenges [34].Edge computing is defined as enabling technologies thatallow computation to be performed at the edge of thenetwork, processing downstream data on behalf of cloudservices, and upstream data on behalf of IoT services. Thispaper pointed out the challenges of edge computing and isone of the most cited papers in the edge computing field. InOctober 2016, ACM and IEEE jointly organized the firstACM/IEEE Symposium on Edge Computing (SEC). Sincethen, the International Conference on DistributedComputing Systems (ICDCS), the International Conferenceon Computer Communications (INFOCOM), theInternational Middleware Conference, and other importantinternational conferences have added an edge computingtrack and/or workshops to their main conferences.At the same time, multiple industry sectors have activelypromoted the development of edge computing. InSeptember 2015, ETSI published a white paper on MEC. InNovember 2015, Cisco, ARM, Dell, Intel, Microsoft, andPrinceton University jointly established the OpenFogConsortium, which is dedicated to the development of FogReference Architecture [28]. The OpenFog Consortiummerged into the Industrial Internet‐of‐Things (IIoT) inJanuary 2019. In November 2016, Huawei, ShenyangInstitute of Automation of Chinese Academy of Sciences,China Academy of Information and CommunicationsTechnology (CAICT), Intel, ARM, and iSoftStone

established the Edge Computing Consortium (ECC) inBeijing, China, which is dedicated to advancing cooperationamong industry resources from government, vendor,academic, research, and customer sectors, and pushingforward the sustainable development of the edgecomputing industry [12]. In March 2017, the ETSI MECIndustry Specification Working Group was formallyrenamed to multiaccess edge computing, aiming to bettermeet the requirements of edge computing and relatedstandards. Linux EdgeX Foundry was also built in 2017; itis a vendor‐neutral open‐source project hosted by TheLinux Foundation. It aims to build a common openframework for IoT edge computing. In January 2018,Automotive ECC (AECC) was established to drive thenetwork and computing infrastructure needs of automotivebig data [4], which indicates that edge computing is valuedin the vehicle domain. In the same year, the Cloud NativeComputing Foundation (CNCF) Foundation and EclipseFoundation cooperated to bring Kubernetes, which hasbeen widely used in the ultra large‐scale cloud computingenvironment, into the edge computing scene of the IoT.Subsequently, KubeEdge, a Kubernetes native edgecomputing framework, was accepted into the CNCFsandbox in March 2019 [24]. In April 2019, the Bio‐ITWorld Conference and Expos added the edge track [6],which means that edge computing is important to thehealth domain as well.In the rapid growth period, the industry has seensignificant advancements, evidenced by the availability ofmultiple edge environment solutions from major serviceproviders. Today, options like AWS Greengrass [5],Microsoft Azure [25, 26], Google Cloud Platform EdgeZones [15] have made it easier for businesses anddevelopers to deploy and manage edge computinginfrastructures effectively. These developments underscore

the maturity and widespread adoption of edge computingacross various sectors.
1.2.3 Intelligence Integration PeriodEdge computing has seen substantial growth andtransformation in recent years, driven by the increasingdemand for low‐latency data processing and efficientresource utilization. The development of edge computing ischaracterized by bringing together IoT, big data, andmobile computing into an integrated and ubiquitouscomputing platform. The capability of delivering on‐demand computing power at the edge and processing avast amount of data from various devices/sensors enablesreal‐time analytics and decision‐making. A significantadvancement within this domain is the integration of edgeintelligence, where artificial intelligence (AI) and machinelearning (ML) algorithms are deployed at the edge. Thissymbiotic relationship enhances the capability of edgecomputing, allowing for sophisticated data analysis andautonomous decision‐making directly at the data source.Edge intelligence empowers devices to process and act ondata locally, leading to smarter, faster, and more efficientsystems across various industries, from autonomousvehicles to smart cities and beyond.Building on this foundation, the intelligence integrationperiod marks a crucial phase in the evolution of edgecomputing. Technological strategies such as pruning,quantization, and knowledge distillation are employed tooptimize AI models for efficient operation on edge devices.Simultaneously, AI algorithms find wide application acrosssystems such as smart surveillance, autonomous vehicles,health monitoring systems, industrial IoT, smartagriculture, and retail enhancements, furtherdemonstrating the pervasive impact of this integration.These advancements not only improve responsiveness but

also deliver substantial societal benefits. While thepotential of these integrations is immense, the associatedprivacy and security concerns are non‐negligible and willbe discussed in Chapter 8, with deeper technological andapplication‐based discussions slated for Chapters 3, 4,and 7.
1.3 What Is Edge Computing?After exploring the background of edge computing'semergence and examining its three distinct phases ofdevelopment, it's time to address a fundamental question:what exactly is edge computing?There is no standard definition for edge computing yet. Inthe field of edge computing, industry experts and otherresearchers have provided their own definitions. Forexample, IBM views edge computing as a distributedcomputing framework that brings enterprise applicationscloser to data sources such as IoT devices or local edgeservers [20]. CISCO interprets edge computing as a modelthat shifts computing resources from central data centersor public clouds closer to devices, that is, embedded at theedge of service provider networks [9]. Satyanarayanandefines edge computing as a computing paradigm in whichsubstantial computing and storage resources—variouslyreferred to as cloudlets, micro data centers, or fog nodes—are placed at the Internet's edge in close proximity tomobile devices or sensors [32]. Yousefpour et al. believeedge computing is located at the edge of the network closeto IoT devices, and edge can be more than one hop awayfrom IoT devices in the local IoT network [41].

Figure 1.5 Edge computing paradigm.Here, we give our own definition of edge computing. In thevision paper published in 2016, we highlighted that edge
computing refers to the enabling technologies
allowing computation to be performed at the edge of
the network, on downstream data on behalf of cloud
services and upstream data on behalf of IoT services.[34]. As shown in Figure 1.5, in our definition, “edge” canbe any computing and network resources along the pathbetween data sources and cloud data centers. The rationale

of edge computing is that computing should happen at
the proximity of data source, close to the users. Wecan interpret the word “close” in two ways. First, the edgecomputing resource and the end users may be close in thecommunication network. Therefore, the small network sizemakes it more feasible to deal with network instability(e.g., bandwidth, delay, and jitter). Second, the resourceand users may be close in spatial distance, which meansthey share similar environmental information. Thecomputing resources may leverage the shared informationto provide personalized services and improve the userexperience. Network distance and spatial distance are notcorrelated to each other, and it may depend on theconcrete scenarios to decide which type of close (or both)is appropriate.If we view resources on the path between IoT services andcloud services as a continuum, edge can be any computing,storage, and network resources on this path. Depending onthe specific requirements and concrete scenarios, the edgecan be one or multiple resources (nodes), as shown inFigure 1.6. It can be a smartphone or a desktop serving asthe edge between body things and the cloud, a gateway in asmart home as the edge between home things and thecloud. It can also be as small as embedded devices such aswearable sensors and security cameras, or as big as amicro data center. There are a huge amount of edgeresources; they are scarcely distributed around end users,independent of each other. Edge computing is dedicated tounifying these resources that are close to end users ineither the communication network or spatial distance andprovides computing, storage, and network services forapplications.

Figure 1.6 Edge computing is a continuum.If we understand edge computing from a biologicalperspective, we can make the following analogy: cloudcomputing is akin to the human brain, while edgecomputing is akin to nerve endings. When a needle pricksthe hand, a person instinctively pulls their hand backbefore the brain even realizes the prick because the reflexaction is processed by the nerve endings. This reflex actionspeeds up the response, preventing further harm, whileallowing the brain to focus on more complex tasks. In thefuture era of the IoE, it is impractical for cloud computingto act as the “brain” for every device. Instead, edgecomputing allows edge devices to have their own “brains.”To have an overview of the development of edgecomputing, we investigate the time period when it gotattention and became popular. If you search for “edgecomputing” in Google Trends, set the time range to be
01/01/2010–now, you will see a trend like Figure 1.7.“Interest over time” shows search interest relative to thehighest point on the chart for the given region (in thisexample, we choose Worldwide) and time (from 2010 till2024). A value of 100 means the term is in the peak

popularity. A value of 50 means that the term is half aspopular. A score of 0 means there was not enough data forthis term. We can see that the attention to edge computinghas been continuously increasing since 2016, reflecting itsimportance in the development of technology. In the years2022 to 2023, there is a drop in “interest over time” foredge computing. At the same, another term, Edge AI, hasbeen raising attention and has been getting more and moreinterest since 2023, when the large language model (LLM)started to dominate the artificial intelligence (AI) andmachine learning (ML) market. The trend of these twowords perfectly shows the focus of the research area inedge computing. Before LLM showed up, the researchfocus in this field was on the computing paradigm itself,such as the architectures and components of edgecomputing (Chapter 3), edge computing hardware andsoftware (Sections 4.1 and 4.2), and challenges andsolutions in edge computing (Chapter 5). With thedevelopment of AI and ML, especially LLMs, the world haswitnessed the power of AI models. However, to make thesepowerful models accessible to the masses, the computingand storage resource constraints became a significantbottleneck. Therefore, the research focus in this field hasshifted to enabling edge‐based AI by tackling the problemof resource constraints (Sections 4.3 and 4.4).

Figure 1.7 “Edge computing” and “edge AI” trends.

1.4 Summary and Practice
1.4.1 SummaryThis chapter provides the definition and core concept ofedge computing, emphasizing that edge computing is acontinuum. The “edge” in edge computing refers to anycomputing, storage, and network resources along the pathfrom the data source to the cloud computing center. Thediscussion of the development and challenges of big dataprocessing and the Internet of Everything helps tounderstand the background of the emergence of thiscomputing paradigm. This chapter also reviews thehistorical development of data‐oriented computing modelssuch as distributed databases, P2P, CDN, MEC, fogcomputing, and Cloud‐Sea computing. Additionally, itintroduces the current status of edge computing and itsclose connection with edge intelligence.
1.4.2 Practice Questions

1. What is the “edge”?2. What are the main characteristics that distinguish edgecomputing from traditional cloud computing?3. Identify and explain the challenges that traditionalcloud computing faces in handling the large volumes ofdata generated by IoE devices.4. Why is edge computing necessary in the era of theInternet of Everything?5. Explain examples of real‐world applications for eachuse case presented in Figure 1.6.6. Based on the background and evolutionary history ofedge computing discussed in this chapter, what do you

think are the key challenges that could arise during thedevelopment of edge computing?
1.4.3 Course Projects

1. Analyze real‐world case studies where edge computingis used to solve specific problems and understand whyedge computing was necessary in each case. Casestudies can be found from sources likehttps://lfedge.org/.2. Conduct a comprehensive study of various open‐sourceedge platforms to understand the capabilities,strengths, weaknesses, and potential use cases of eachplatform. The platforms to be researched could include,but are not limited to: LF Edge Projects (EdgeXFoundry, Akraino, and Open Horizon), Kubernetes foredge (KubeEdge, K3s, and MicroK8s), OpenFaaS.3. Explore a basic edge computing use case and present asimple prototype. For example, smart home, healthcaremonitoring. The prototype will involve the design ofdata processing system architecture, and operate on anedge device.4. Build a smart home environment that leverages edgecomputing to manage and control devices such aslights, temperature sensors, security cameras locally,instead of relying solely on cloud services.

https://lfedge.org/

Chapter 1 Suggested Papers
 1 Mahadev Satyanarayanan. “The emergence of edgecomputing”. In: Computer 50. 1 (2017), pp. 30–39. 2 Weisong Shi et al. “Edge computing: Vision andchallenges”. In: IEEE Internet of Things Journal 3. 5(2016), pp. 637–646. 3 Weisong Shi, George Pallis, and Zhiwei Xu. “Edgecomputing [scanning the issue]”. In: Proceedings of the

IEEE 107. 8 (2019), pp. 1474–1481.
References 1 Akamai. Amazon CloudFront.https://www.akamai.com/solutions/content-delivery-network. Accessed: 2024‐07‐24. 2 Amazon AWS. Amazon CloudFront.https://aws.amazon.com/cloudfront/. Accessed: 2024‐07‐24. 3 Kevin Ashton. “That ‘Internet of Things’ thing”. In: RFID

Journal 22. 7 (2009), pp. 97–114. 4 Automotive Edge Computing Consortium. Automotive
Edge Computing Consortium. https://aecc.org/.Accessed: 2024‐07‐31. 5 AWS. IoT Edge. https://aws.amazon.com/greengrass/.Accessed: 2024‐08‐26. 6 Bio‐IT World. bio‐IT World Conference Edge Track.https://kubeedge.io/. Accessed: 2024‐07‐31.

https://www.akamai.com/solutions/content-delivery-network
https://aws.amazon.com/cloudfront/
https://aecc.org/
https://aws.amazon.com/greengrass/
https://kubeedge.io/

 7 Flavio Bonomi et al. “Fog computing and its role in theInternet of Things”. In: Proceedings of the 1st Edition of
the MCC Workshop on Mobile Cloud Computing. 2012,pp. 13–16. 8 Weisong Shi Mung Chiang. NSF Workshop Report on
Grand Challenges in Edge Computing.https://www.weisongshi.org/papers/shi16-nsfreport.pdf.Accessed: 2024‐07‐30. 9 Cisco. Edge Computing Solutions.https://www.cisco.com/c/en/us/solutions/service-provider/edge-computing.html. Accessed: 2024‐05‐11.

10 Cisco. Redefine Connectivity by Building a Network to
Support the Internet of Things.https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html. Accessed: 2024‐05‐25.

11 Laura DeNardis. The Internet in everything. YaleUniversity Press, 2020.
12 Edge Computing Consortium. Introduction of Edge

Computing Consortium.http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf. Accessed: 2024‐07‐31.
13 Exploding Topics. Amount of Data Created Daily (2024).https://explodingtopics.com/blog/data-generated-per-day. Accessed: 2024‐05‐14.
14 Iggy Fernandez. No! to SQL and No! to NoSQL.https://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/. Accessed: 2024‐07‐24.
15 Google Cloud. Google Distributed Cloud.https://cloud.google.com/distributed-

https://www.weisongshi.org/papers/shi16-nsfreport.pdf
https://www.cisco.com/c/en/us/solutions/service-provider/edge-computing.html
https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html
http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
https://explodingtopics.com/blog/data-generated-per-day
https://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
https://cloud.google.com/distributed-cloud/edge/latest/docs

cloud/edge/latest/docs. Accessed: 2024‐08‐26.
16 Katarina Grolinger et al. “Data management in cloudenvironments: NoSQL and NewSQL data stores”. In:

Journal of Cloud Computing: Advances, Systems and
Applications 2 (2013), pp. 1–24.

17 Adam Grzywaczewski. Training AI for Self‐Driving
Vehicles: the Challenge of Scale.https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale/. Accessed: 2024‐08‐26.

18 Jayavardhana Gubbi et al. “Internet of Things (IoT): Avision, architectural elements, and future directions”. In:
Future Generation Computer Systems 29. 7 (2013), pp.1645–1660.

19 Yun Chao Hu et al. “Mobile edge computing—A keytechnology towards 5G”. In: ETSI White Paper 11. 11(2015), pp. 1–16.
20 IBM. What is edge computing?https://www.ibm.com/topics/edge-computing. Accessed:2024‐05‐11.
21 Insurance Information Institute. Background on: Self‐

driving cars and insurance.https://www.iii.org/article/background-on-self-driving-cars-and-insurance. Accessed: 2024‐08‐26.
22 Hosagrahar V Jagadish et al. “Timber: A native XMLdatabase”. In: The VLDB Journal 11 (2002), pp. 274–291.
23 KPMG. Corporate data responsibility: Bridging the

consumer trust gap.https://kpmg.com/us/en/articles/2023/bridging-the-trust-chasm.html. Accessed: 2024‐08‐26.

https://cloud.google.com/distributed-cloud/edge/latest/docs
https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale/
https://www.ibm.com/topics/edge-computing
https://www.iii.org/article/background-on-self-driving-cars-and-insurance
https://kpmg.com/us/en/articles/2023/bridging-the-trust-chasm.html

24 KubeEdge Project Authors. KubeEdge.https://kubeedge.io/. Accessed: 2024‐07‐31.
25 Microsoft Azure. Azure Stack.https://azure.microsoft.com/en-us/products/azure-stack/. Accessed: 2024‐08‐26.
26 Microsoft Azure. IoT Edge.https://azure.microsoft.com/en-us/products/iot-edge/.Accessed: 2024‐08‐26.
27 Dejan S Milojicic. Peer‐to‐peer computing. 2002.
28 OpenFog Consortium. OpenFog Reference Architecture

for Fog Computing.https://www.iiconsortium.org/pdf/OpenFog_Reference:Architecture_2_09_17.pdf. Accessed: 2024‐07‐31.
29 Gang Peng. “CDN: Content distribution network”. In:

arXiv preprint cs/0411069 (2004).
30 Michael Rabinovich, Zhen Xiao, and Amit Aggarwal.“Computing on the edge: A platform for replicatinginternet applications”. In: Web Content Caching and

Distribution: Proceedings of the 8th International
Workshop. Springer. 2004, pp. 57–77.

31 Jayashree Ravi, Weisong Shi, and Cheng‐Zhong Xu.“Personalized email management at network edges”. In:
IEEE Internet Computing 9. 2 (2005), pp. 54–60.

32 Mahadev Satyanarayanan. “The emergence of edgecomputing”. In: Computer 50. 1 (2017), pp. 30–39.
33 Mahadev Satyanarayanan et al. “The case for VM‐basedcloudlets in mobile computing”. In: IEEE Pervasive

Computing 8. 4 (2009), pp. 14–23.

https://kubeedge.io/
https://azure.microsoft.com/en-us/products/azure-stack/
https://azure.microsoft.com/en-us/products/iot-edge/
https://www.iiconsortium.org/pdf/OpenFog_Reference:Architecture_2_09_17.pdf

34 Weisong Shi et al. “Edge computing: Vision andchallenges”. In: IEEE Internet of Things Journal 3. 5(2016), pp. 637–646.
35 Statista. Number of Internet of Things (IoT) connected

devices worldwide from 2019 to 2023, with forecasts
from 2022 to 2030.https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. Accessed: 2024‐05‐25.

36 Harald Sundmaeker et al. “Vision and challenges forrealising the Internet of Things”. In: Cluster of European
Research Projects on the Internet of Things, European
Commission 3. 3 (2010), pp. 34–36.

37 U.S. National Science Foundation. NSF 16‐586:
NSF/Intel Partnership on Information‐Centric
Networking in Wireless Edge Networks (ICN‐WEN).https://new.nsf.gov/funding/opportunities/nsfintel-partnership-information-centric/505310/nsf16-586/solicitation. Accessed: 2024‐07‐30.

38 UN Trade and Development. Digital economy report
2024. https://unctad.org/publication/digital-economy-report-2024. Accessed: 2024‐08‐26.

39 Luis M Vaquero and Luis Rodero‐Merino. “Finding yourway in the fog: Towards a comprehensive definition offog computing”. In: ACM SIGCOMM Computer
Communication Review 44. 5 (2014), pp. 27–32.

40 Zhi‐Wei Xu. “Cloud‐sea computing systems: Towardsthousand‐fold improvement in performance per watt forthe coming zettabyte era”. In: Journal of Computer
Science and Technology 29. 2 (2014), pp. 177–181.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://new.nsf.gov/funding/opportunities/nsfintel-partnership-information-centric/505310/nsf16-586/solicitation
https://unctad.org/publication/digital-economy-report-2024

41 Ashkan Yousefpour et al. “All one needs to know aboutfog computing and related edge computing paradigms: Acomplete survey”. In: Journal of Systems Architecture 98(2019), pp. 289–330.

2
Fundamentals of Edge Computing
In the context of the industrialization of emerginginformation technologies, no new technology arises in avacuum. Each new development is a response to thegrowing demands of new applications for highperformance, real‐time processing, low energyconsumption, and low latency, which highlight thelimitations of existing information systems in computation,storage, and transmission. In the era of the Internet ofEverything (IoE) and big data, the volume of datagenerated by network edge devices has increaseddramatically. Traditional cloud‐based big data‐processingtechnologies are gradually unable to meet the real‐timeprocessing and low energy consumption demands of users.It is within this context that edge computing has emerged,addressing the shortcomings of current big data‐processingtechnologies and rapidly gaining significant attention fromboth industry and academia over the past decade.
2.1 Distributed ComputingDistributed computing [6, 29] involves connectingnumerous computer nodes via the Internet to break down acomputational task, which a single computer cannothandle, into multiple tasks that are distributed amongvarious computers in the network. The edge node executesits assigned task, and the results are integrated into thefinal output, which is then returned. This processrepresents computation executed on a distributed system.Distributed computing relies on multiple distributedcomputing units interconnected by high‐speed networks to

perform high‐performance computations. It ischaracterized by meeting user demand and resourceavailability, enabling resource sharing among differentnodes. The main challenges it faces include heterogeneity,scalability, faculty tolerance, and concurrency.
2.1.1 Distributed Computing TechnologiesDistributed computing technologies primarily includemiddleware technology [8], grid computing technology [5],mobile agent technology [33], P2P technology [22], andweb service technology [7].

Middleware Technology: Middleware is situatedbetween the operating system and distributedapplication software, used to mask the heterogeneity ofoperating systems and network protocols in adistributed environment. IBM developed a customerinformation control system (CICS) with middlewarefunctions in the 1960s. Early middleware software hadrelatively simple functions, primarily providingmessage communication and transaction processing. Asthe demand for middleware applications diversified,middleware technology evolved into several categories:remote procedure call‐based middleware, message‐oriented middleware, database middleware, and object‐oriented middleware. Among these, object‐orientedmiddleware has become the mainstream technology formiddleware platforms.
Grid Computing Technology: Grid computingintegrated geographically dispersed hardware andsoftware resource through high‐speed networks tocomplete large‐scale complex computation and data‐processing tasks. It generally refers to two widely usedsubtypes in distributed computing: one is onlinecomputation or storage provided as a service supported

by distributed computing resources; the other is avirtual supercomputer formed by loosely connectedcomputer networks to execute large‐scale computationtasks. In terms of grid architecture, grid computing ismainly divided into two types: one is the five‐layerhourglass structure represented by the Globus project,and the other is the open‐grid services architecture(OGSA) that integrates with web services. The primarydifference between the two structures is that theformer is protocol‐centric, while the latter is service‐centric.
Mobile Agent Technology: Mobile agents canautonomously and automatically migrate withinheterogeneous networks and distributed computingenvironments, and communicate with other agents. Indifferent network structures, mobile agents followcertain principles to locate matching resourceinformation, perform tasks on behalf of clients, andautonomously generate subagents as ended. In amobile agent system, each agent works independentlyand can collaborate to complete tasks when necessary.
P2P Technology: By linking terminal devices in thenetwork and integrating idle resources, P2P technologymaximizes resource sharing and distributed computing.In a P2P network, each node contributes its idleresources and uses resource discovery mechanisms tofind available resources on other nodes, enablingresource sharing. P2P technology can maximize theutilization of network resources. However, due to itscharacteristics of openness, self‐organization,autonomy, and distribution, network users candynamically and anonymously join or leave the system.Consequently, P2P technology may face practical issuessuch as copyright infringement, lack of managementmechanisms, network pollution, and malicious attacks.

Web service Technology: Web service technology isan extension of object/component technology on theInternet and a type of distributed computingtechnology deployed on the web. The primary goal ofweb service technology is to construct a platform‐ andlanguage‐independent general technical layer on top ofexisting heterogeneous platforms, allowing applicationson different platforms to run smoothly. This technologyaddresses the issue of limited interoperability, therebyimproving and expanding the functionality ofdistributed computing.
2.1.2 Distributed System PlatformsThe numerous challenges of big data environments havespurred the use of distributed computing technology andthe growth of distributed systems. Today, Hadoop [32],Spark [36], and Storm [4] are among the most widely usedplatforms.Hadoop, developed by the Apache Software Foundation, isa distributed computing framework whose corecomponents include a distributed file system (Hadoopdistributed file system, HDFS [27]), a programming model(MapReduce [13]), and a distributed structured data table(HBase [17]). These correspond to the open‐sourceimplementations of Google's core cloud computingtechnologies: GFS [18], MapReduce, and Bigtable [11].MapReduce abstracts the parallel computing process onlarge‐scale distributed systems into two functions: Map andReduce.When a task is submitted to the Hadoop platform, it isdivided into multiple chunks. The JobTracker assigns thecurrently idle TaskTracker to perform parallel Mapoperations on these chunks. The RecordReader generatesK, V key–value pairs from the split data chunks for

parallel execution across different nodes. The intermediaterecords produced by the Map tasks are further divided intomultiple chunks, with the JobTracker again assigning idleTaskTrackers to perform parallel Reduce operations onthese chunks. The final results are written to output filesand are managed by HDFS.However, because MapReduce stores intermediate resultson disk during distributed computing, especially duringiterative computations in data mining where previousresults need to be frequently accessed and used, thesystem's performance is significantly affected.To address the performance degradation caused by HadoopMapReduce frequent reading and writing to the file system,the AMP lab at the University of California, Berkeleydeveloped Spark, a memory‐based computing platform. Thekey technology behind Spark is the creation of ResilientDistributed Datasets (RDDs), which support data beingstored in memory, thereby enabling an in‐memoryMapReduce architecture. By using RDDs, the MapReduceprocess avoids writing intermediate results back to theHDFS file system, significantly boosting computationalefficiency. This improvement is especially pronounced ininteractive computations, where Spark can be over 100times faster than Hadoop. However, while Spark alleviatesthe problem of frequent disk I/O, it is highly memory‐intensive.Apache Storm, an open‐source distributed real‐timecomputation system developed by Twitter (now known asX), is designed to efficiently process massive streams ofdata. Storm supports multiple programming languages andprovides a set of primitives for real‐time computation,greatly reducing the development cycle for large‐scale real‐time processing.

Storm is widely used in various applications such as onlinemachine learning, real‐time analytics, distributed remoteprocedure calls (RPCs), continuous computation, andExtract, Transform, Load (ETL). Real‐time applicationsrequiring Storm are packaged into task topology andsubmitted for execution. Once submitted, these tasktopology will continue to run until explicitly terminated. Atask topology is composed of a series of spouts and boltsarranged in a directed acyclic graph (DAG). Spouts areresponsible for reading data from external sources, whilebolts process the data received from spouts or other bolts.By cascading spouts and bolts, the system completes thedesired computation tasks.In summary, distributed computing has evolved from theMapReduce architecture implemented on the Hadoopplatform to distributed systems like Storm that supportstream processing. This evolution aims to meet theincreasing real‐time demands of big data processing.
2.2 The Basic Concept and Key
Characteristics of Edge ComputingHaving established a foundational understanding ofdistributed computing technologies and platforms, we cannow shift our focus to a more specialized domain withinthis field: edge computing. This transition is essential asedge computing builds upon the principles of distributedcomputing but applies them in the context of optimizingdata processing closer to the data source. This section willdelve into the basic concepts and key characteristics ofedge computing, highlighting how it differs from andextends the ideas we explored in distributed computing.

2.2.1 The Basic ConceptIn the era of the IoE, connectivity extends beyond justthings in the IoT. It includes interactions between peopleand things, featuring contextual awareness, enhancedcomputing capabilities, and advanced sensing abilities. Inthis interconnected model, people and information areintegrated into the Internet, creating a network withbillions or even trillions of connected nodes. IoE is based onphysical networks, combining network intelligence,collaboration among all connected things, and visualizationfunctions.Sensors, smartphones, wearable devices, and smartappliances will all become part of the IoE, generatingmassive amounts of data. However, the current cloudcomputing model lacks the network bandwidth andcomputing resources to efficiently handle this data [1, 20].Figure 2.1 illustrates the traditional cloud computingmodel. In this model, source data is sent from producers tothe cloud, and data consumers, such as smartphones,personal computers, and even autonomous driving cars,send usage requests to the cloud center. In the figure, solidlines represent source data being sent by data producers tothe cloud center, dashed lines represent data consumerssending usage requests to the cloud center, and dottedlines show the cloud center sending results back to thedata consumers.

Figure 2.1 Traditional cloud computing model.Cloud computing uses extensive cloud resources to processdata, but in the IoE environment, the traditional cloud

computing model cannot effectively meet applicationneeds. The main reasons are: (1) sending massive amountsof data from edge devices directly to the cloud leads tonetwork bandwidth overload and wasted computingresources; (2) privacy protection issues in the traditionalcloud computing model pose significant challenges in theIoE architecture; (3) most edge device nodes in the IoEarchitecture have limited energy, while wirelesstransmission modules like global system for mobilecommunications (GSM) and Wi‐Fi consume a lot of power.To address these issues, leveraging the existing computingcapabilities of edge devices by migrating all or part of theapplication service tasks from the cloud center to the edgedevices will help reduce energy consumption [30].Currently, edge devices not only consume data, such aswhen users watch online videos on smartphones, but alsoproduce data, like when people share photos and videos onplatforms like Facebook and X. This shift from being dataconsumers to data producers requires edge devices to havemore powerful computing capabilities. For example, everysingle minute, X users send 360 K tweets, Instagram userssend 694 K reels through direct messages per minute,ChatGPT users send 6944 prompts, and viewers watch 43years' worth of streaming content [15]. Additionally,autonomous driving vehicles generate vast amounts ofsensor and video data every second, posing significantchallenges to bandwidth and computing resources forprocessing and uploading the generated data. These largevolumes of images, videos, and sensor data requiresignificant bandwidth when uploaded to cloud computingcenters. To address this, preprocessing can be performedon edge devices before uploading the source data to thecloud, reducing the amount of data transmitted andalleviating bandwidth load. Moreover, processing personal

health data and other sensitive information on edge devicesenhances privacy protection for users [16, 28].Edge computing is a new computing model that executescomputations at the network's edge. It involves two typesof services: downstream cloud services and upstream IoEservices. In this model, “the edge” encompasses allcomputing, storage, and network resources along the pathfrom the data source to the cloud computing center. Asillustrated in Figure 1.5, edge computing relies on abidirectional computational flow. Cloud centers collect datanot only from databases but also from edge devices likesensors and smartphones. These devices function as bothdata producers and consumers, making the data exchangebetween the endpoint devices and the cloud centerbidirectional. Edge devices do more than request contentand services from the cloud; they also undertake variouscomputation tasks, including data storage, processing,caching, device management, and privacy protection.Enhancing the design of the hardware platforms and keysoftware technologies of edge devices is crucial to meet thedemands for reliability and data security in edgecomputing.From a functional standpoint, the edge computing model isa distributed computing system characterized by elasticmanagement, collaborative execution, environmentalheterogeneity, and real‐time processing capabilities. Itshares similarities with streaming computation models butalso includes unique features that are outlined below(Figure 2.2):

Figure 2.2 Edge computing model characteristics.
Divisibility of applications/services: Applications orservices suitable for edge computing must be divisible.This means a task can be decomposed into severalsubtasks, which can be executed at the edge. The keyaspect here is not just the ability to split tasks but alsotheir migratability. Only tasks that can be migrated foredge processing meet the necessary criteria.
Distributability of data: This feature defines edgecomputing and dictates the requirements for data setsbeing processed. If the data lacks distributability, thenthe model resembles a centralized cloud computingframework. Distributability needs to address data from

various sources, typically generated by producerscreating large volumes of data.
Distributability of resources: As the data in edgecomputing models is inherently distributed, so too mustbe the computing, storage, and communicationresources required to process this data. An edgesystem can only adhere to the true model of edgecomputing if it has the resources necessary forprocessing and computing data at the edge.

2.2.2 The Key Characteristics
2.2.2.1 Compute MigrationIn traditional cloud computing models, compute migrationstrategies typically involve shifting compute‐intensive tasksto well‐resourced data centers. However, in the context ofthe IoE, the vast data volumes generated by numerousedge devices cannot be efficiently transmitted to thesecenters due to limited bandwidth. Even though cloudcenters have significantly lower computational latencycompared to edge devices, the substantial datatransmission overhead can hinder overall systemperformance.Thus, the compute migration strategy in edge computingshould focus on minimizing the amount of data that needsto be transmitted across the network, rather thanrelocating compute‐intensive tasks to edge devices.The edge computing strategy includes conducting partial orcomplete preprocessing of data directly at the networkedge, where data is initially collected or generated by theedge devices. This preprocessing aims to filter outunnecessary data, reducing the bandwidth demand.Moreover, it is crucial to dynamically allocate tasks basedon the current computational load of the edge devices to

avoid overloading any single device, which could degradesystem performance.Key considerations in compute migration includedetermining which tasks are suitable for migration,deciding on a migration strategy, selecting specific tasksfor migration, and deciding whether to perform partial orcomplete migrations. The decisions regarding computemigration should be tailored to the application model,considering whether the application can be migrated,whether the required data volume for processing isaccurately known, and whether the tasks can be efficientlysynchronized postmigration.Ultimately, compute migration technology should strive tofind the optimal balance between energy consumption,computational latency at the edge, and the volume of datatransmitted, thus enhancing the performance andefficiency of the edge computing model.
2.2.2.2 5G and 6G Communication TechnologiesThe fifth and sixth generations (5G and 6G) of mobiletelecommunications systems aim to deliver higher dataspeeds, ultralow latency, more reliability, massive networkcapacity, increased availability, and a more uniform userexperience to more users.The 5G technology standard for cellular networks, whichcellular phone companies began developing worldwide in2019, is the planned successor to the 4G networks, whichprovide connectivity to most current cell phones. 5Gnetworks are predicted to have more than 1.7 billionsubscribers worldwide by 2025, according to the GSMAssociation [31]. Compared to 4G, 5G significantlyincreases the speed and responsiveness of wirelessnetworks, supports far more devices at high data rates, and

reduces latency, which is beneficial for new technologiessuch as autonomous driving, virtual reality, and the IoT.Although still in the early stages of development andstandardization, 6G networks are expected to succeed in5G. Predictions suggest that 6G will enable even higherspeeds and lower latency, with the integration of advancedtechnologies like artificial intelligence (AI) andsophisticated satellite networks. It is anticipated to supporteven more innovative applications, potentially includingadvanced augmented reality, high‐fidelity mobileholograms, and greater integration of physical and digitalrealities.To meet the diverse application scenarios and businessdemands, 5G and 6G networks will require a universal,scalable, and easily extendable network architecture. Thiswill also involve integrating advanced technologies such assoftware‐defined networks (SDNs) and network functionsvirtualization (NFV).5G and 6G technologies are pivotal in the edge computingmodel. Edge devices, tasked with processing either part orall of the computational duties and filtering out redundantand sensitive information, still need to upload intermediateor final data to cloud centers. Thus, 5G and 6Gtechnologies are critical in reducing data transmissiondelays for mobile edge devices, ensuring faster and moreefficient communication.
2.2.2.3 Advanced Storage SystemsAs computer processors continue to advance rapidly, thespeed disparity between storage systems and processorshas become a significant bottleneck in overall systemperformance. Edge computing requires robust real‐timecapabilities for data storage and processing. Compared totraditional embedded storage systems, edge‐computing

storage solutions offer lower latency, increased capacity,and enhanced reliability. These systems must handle datacharacterized by high immediacy, diversity, andinterconnectivity, ensuring continuous storage andpreprocessing of edge data. Therefore, efficiently managingand accessing continuous, real‐time data is a critical focusin the design of storage systems for edge computing.Presently, nonvolatile memory (NVM) is extensively used inembedded systems and large‐scale data processing.Storage devices based on NVM, such as NAND Flash,PCRAM, and RRAM, provide significantly better read andwrite performance than traditional mechanical hard drives[25], thus effectively mitigating the I/O limitations ofexisting storage systems. However, most traditionalstorage system software stacks, designed primarily formechanical hard drives, do not fully leverage the maximumcapabilities of NVM.As edge computing rapidly advances, NVM, characterizedby high density, low energy consumption, low latency, andhigh read/write speeds, is increasingly being deployed inedge devices. However, the integration of NVM within edgesystems faces several challenges:
Rapid Technological Development vs. Software
Support: The fast‐paced advancement of NVMtechnologies is not mirrored by the development ofsupporting software stacks, leading to a “softwarebottleneck.” This mismatch hampers the ability ofstorage systems to fully utilize the speed and efficiencyof modern NVM technologies.
Diverse Application Requirements: Edge computingdemands a variety of applications for emerging storagearchitectures. A crucial area of research involvesmaximizing the performance, energy efficiency, and

capacity benefits of nonvolatile storage systems. Keyissues include optimizing nonvolatile memory for timelyedge data processing and simplifying storage systemmanagement in complex edge environments.
Reliability in Challenging Environments: Edgeenvironments require robust read/write capabilitiesand high data reliability. Ensuring data reliability inNVM under complex external conditions and resourceconstraints is a pivotal concern. Factors affecting datareliability include consistency issues in NVM, targetedmalicious wear attacks, and the lifespan and failurerates of the storage media.

Addressing these challenges is essential for optimizing theuse of NVM in edge computing, necessitating focusedresearch and development in both hardware and softwaredomains.
2.2.2.4 Lightweight Libraries and KernelsUnlike large servers, edge devices are constrained by theirhardware capacity and often cannot support the operationof heavy software applications. For example, whileadvanced RISC machines (ARM) processors continue toincrease in speed and decrease in power consumption, theystill lack the capability to handle complex data‐processingapplications effectively. For instance, running ApacheSpark optimally requires at least an 8‐core CPU and 8 GBof memory. In contrast, the lightweight library ApacheQuarks [3] can only perform basic data‐processing tasksand is unsuitable for advanced analytics.Moreover, the network edge is populated with a diversearray of devices from various manufacturers, characterizedby significant heterogeneity and varying performancelevels, making application deployment on these devices acomplex challenge. Virtualization technology often serves

as a solution; however, traditional virtual machine (VM)‐based virtualization is too resource‐intensive and slow foredge environments, where swift responses are crucial.Instead, edge competing models should adopt lightweightvirtualization technologies that align with the limitedresources of edge devices. Lightweight libraries andkernels are particularly valuable in this context, as theyconsume fewer resources and time, thereby optimizingperformances. Docker is an example of such a technologythat utilizes containerization. Docker containers are muchmore resource‐efficient compared to VMs because theyvirtualize at the operating system level and share the hostsystem's kernel, rather than requiring a full operatingsystem for each instance. This allows Docker to provideisolated environments for applications using minimalresources, making it ideal for deploying applications onresource‐constrained edge devices. Docker not onlyenhances the scalability and deployment speed but alsomaintains consistent environments across development,testing, and production, reducing compatibility issues.Therefore, Docker and similar container‐based technologiesare indispensable for optimizing performance and resourceutilization in edge computing.
2.2.2.5 The Edge Computing Programming ModelIn the cloud computing model, users write applications anddeploy them to the cloud, where cloud service providersmaintain the servers. This model allows users to remainlargely unaware of the application's operation, benefitingfrom the infrastructure's transparency. Typically, userprograms are written and compiled on the target platformand run on cloud servers.In contrast, the edge computing model involves migratingsome or all computing tasks from the cloud to edge nodes.

These nodes often exist on heterogeneous platforms, eachwith different operating environments, presentingsignificant deployment challenges for programmers. Thetraditional programming models are inadequate for thesetting, highlighting the need for new programming modelstailored to edge computing.To address this, we propose a concept known as a“computation stream.” This concept represents the datatransmission path and the sequence of computations orfunctions performed on the data. These functions, integralto an application, occur along data paths that enablecomputational applied at the source device, edge nodes,and cloud environments to enable efficient distributed dataprocessing.The evolution of the programming model necessitates newruntime libraries, which are essential for implementinglanguage functions and providing runtime support. Thisfoundation is critical in edge computing, whereprogramming model changes demand novel runtimelibraries. These libraries should offer specific applicationinterfaces that simplify application development forprogrammers, thus ensuring that applications can adapt tothe diverse and dynamic nature of edge environments.Building on this foundation, we introduce the “FireworkModel” [37], a novel programming model designedspecifically for edge computing. This model includes twocomponents: the firework model manager and the fireworkmodel nodes. The manager decomposes service requestsinto several subtasks and distributes them amongparticipants, where each subtask is executed locally on theparticipant's device. The nodes provide end‐users with asuite of predefined functional interfaces, facilitating easieraccess and interaction. In this model, all nodes mustregister their datasets and functionalities, which are

abstracted into a data view. These registered data viewsare visible to all participants within the same model,allowing any participant to combine these views for specificdata analyses tailored to particular scenarios. Thisapproach not only leverages the capability of new runtimelibraries but also aligns with the need for flexible andefficient data processing at the edge, embodying theprinciples of software‐defined computations in practical,deployable models.
2.3 Edge Computing vs. Cloud
ComputingWith a clear grasp of edge computing's fundamentalconcepts and its distinct characteristics, it is crucial tounderstand how this technology fits into the broaderlandscape of computing. Specifically, we will explore therelationship between edge computing and cloud computing.This relationship is pivotal for addressing big datachallenges and leveraging the strengths of both paradigms.This section will analyze how edge computing complementscloud computing, discuss their interaction with big data,and evaluate the advantages of edge computing and thechallenges it faces.
2.3.1 The Concept of Cloud ComputingCloud computing [10, 14, 19] is a service delivery modelthat provides scalable distributed computing capabilities byaccessing computational, network, and storage resourcesin data centers over a network. This model leveragesexisting resources and uses virtualization technology [9,26] to create a shared resource pool of many computers. Itoffers powerful computational and managementcapabilities and can dynamically partition and allocate

resources to meet diverse user needs, ensuring efficientservice delivery.Cloud computing is an evolution of parallel computing,distributed computing, and grid computing, or essentially,a commercial realization of these computational scienceconcepts. Cloud computing is generally divided into threeservice types: Infrastructure as a Service (IaaS), Platformas a Service (PaaS), and Software as a Service (SaaS). Ascloud computing continues to advance, different cloudcomputing solutions are increasingly converging andintegrating with one another.From the current research status, cloud computing has thefollowing characteristics:
Large‐Scale Cloud Server: Major IT companies likeGoogle and Microsoft have cloud computing platformswith hundreds of thousands of servers. Even privatecloud projects for typical IT enterprises may involvehundreds or thousands of servers. This vast scaleprovides users with substantial computing power andmassive storage capacity.
High Reliability: Cloud computing platforms aredesigned with distributed server clusters, makingsingle‐pint failures inevitable. To ensure highreliability, cloud computing centers employ fault‐tolerance mechanisms such as replication strategiesand homogeneous interchange of computing nodes.
Scalability: Cloud computing dynamically allocates orreleases resources based on specific user needs. Whendemand increases, cloud computing can quickly providematching resources, offering high‐speed and flexiblescalability. Similarly, resources can be released whenthey are no longer needed, thanks to the inherentscalability of cloud computing.

Virtualization: Cloud computing integrates resourcesdispersed across different geographical locations into alogically unified shared resource pool throughvirtualization technology. Users can request servicesfrom the cloud computing center anytime andanywhere via the Internet. Virtualization hides theheterogeneity of underlying device resources, enablingunified scheduling and deployment of all resources. Thecloud infrastructure is transparent, and users do notneed to worry about the specific location of theseresources. Therefore, virtualization is not only thefoundation of cloud computing but also a definingcharacteristic.
2.3.2 The Big Data EraIn the era of the IoE, the large‐scale application andwidespread development of new technologies such asmobile devices and the Internet have brought datainformatization into the big data era. In May 2011,McKinsey & Company first introduced the concept of “bigdata” in their report “Big Data: The Next Frontier forInnovation, Competition, and Productivity” [24]. Sincethen, the potential value of big data has gained significantattention from national strategic research departmentsworldwide, elevating it to a matter a national importance.The United States launched the “Big Data Research andDevelopment Initiative,” South Korea is actively advancingits “Big Data Center Strategy,” and China has formattedthe “13th Five‐Year Plan for Big Data IndustryDevelopment.” Big data is poised to encompass all fields ofeconomic and social development and become a newdriving force for national economies.In recent years, big data has become a major focus foracademics, industry professionals, and governmentsworldwide. Leading journals such as Nature and Science

have explored the challenges and opportunities associatedwith big data. As data resources grown in importance, anation's ability to harness and effectively use this data isincreasingly seen as a key factor in its overall strength andinfluence. Big data‐processing technologies cover essentialareas such as the collection, storage, cleaning, analysis,mining, visualization, and privacy protection of massive anddiverse datasets. The integration of edge computing andcloud computing technologies is a primary approach toaddressing significant challenges related to the storage,transmission, and processing of big data. By leveraging thestrengths of both edge and cloud computing, it is possibleto balance big data‐processing tasks efficiently andoptimize bandwidth and storage requirements.Let's examine two examples to understand the relationshipbetween edge computing and big data processing. With thedevelopment of the IoE, both video big data [2] and medicalbig data [21] have high real‐time demands for storage,transmission, and computation.Video big data is generated in high‐definition formats,which currently experience high latency duringtransmission and processing, especially in real‐timescenarios such as object detection and localization. Incurrent video big data processing, video data is typicallytransmitted to a central big data center for processing.These centers, with their robust computing power, handlethe intelligent computation and storage of video data.However, with the widespread adoption of high‐definition(1080P) and ultra‐high‐definition (4K) video, and theincreasing number of video surveillance devices, thevolume of video data has grown significantly. Transmittingthis large volume of video data to the data center foranalysis puts a heavy load on network bandwidth andconsumes considerable resources for data processing.Additionally, the performance of video data processing is

often low due to the sheer volume of data, resulting inreduced real‐time processing capabilities. This delay candirectly impact the ability to make timely decisions inpublic safety scenarios involving emergencies.Therefore, applying edge computing technology to videobig data processing is critically important. By leveragingedge computing, a portion or all of the video processingtasks can be performed at the video surveillance terminal.This approach reduces the amount of data that needs to betransmitted and lowers processing costs, therebyenhancing the efficiency and real‐time capabilities of videobig data processing.Medical big data forms the backbone of intelligenthealthcare. It involves sharing and collaborating on datafrom various sources, including hospitals, pharmaceuticalmanufacturers, pharmacies, and patients. Hospitals possessvast amounts of patient records, drug demand information,and disease distribution data. Pharmaceuticalmanufacturers and pharmacies have drug information andpatient purchase data, while patients' medical data is alsohighly valuable. Collectively, this is known as medical bigdata.A key challenge in utilizing the value of medical big datafor intelligent healthcare services is multi‐edgecollaborative data processing. Given the sensitive nature ofthis data, the critical issue is how to leverage edgecomputing technology to handle sensitive and private dataat the edge while simultaneously sharing medical big datato realize its full value.In addition to the aforementioned video and medical bigdata, there are also significant needs for edge computing insectors like smart grids and smart manufacturing. In thecontext of the IoT, integrating cloud computing with edgecomputing models offers an effective solution for tackling

challenges related to big data collaboration, processingloads, transmission bandwidth, and data privacy protection.
2.3.3 Edge Computing vs. Cloud ComputingIn the context of the IoE, application services require lowlatency, high reliability, and data security. However, thetraditional cloud computing model falls short in meetingthese needs, particularly regarding real‐time performance,privacy protection, and energy consumption. Edgecomputing models leverage the computational capabilitiesof edge devices, performing some or all computations andprocessing privacy‐sensitive data at the edge. Thisapproach reduces the computational load, transmissionbandwidth, and energy consumption of cloud computingcenters. The following examples illustrate the benefits ofedge computing.Yi et al. [35] tested data transmission latency andbandwidth between user nodes and either edge nodes orcloud nodes in the network, as shown in Figures 2.3 and2.4. Amazon EC2 East and Amazon EC2 West represent twocloud nodes located in different geographic regions of theUnited States. Wired edge nodes, WiFi 5 GHz edge nodes,and WiFi 2.4 GHz edge nodes represent three types of edgenode connections to the user's router. The tests wereconducted in Washington, D.C. (near the Amazon EC2 Eastcloud).

Figure 2.3 Round trip time between client and edge/cloud.

Figure 2.4 Bandwidth between client and edge/cloud.The results show that when edge nodes are connected tothe user's network via wired connections, the round‐triptime is significantly better than that of cloud nodes. Whenedge nodes are connected wirelessly, the round‐trip time isbetween the round‐trip times of the two cloud nodes but isless stable due to the lower speed and stability of wirelesschannels compared to wired channels. Bandwidthbenchmarks indicate that edge nodes connected via wiredclients and WiFi 5 GHz have noticeably higher bandwidthcompared to the other three types. Edge nodes using WiFi2.4 GHz have performance levels between the two cloudnodes, primarily because WiFi 2.4 GHz bandwidth is morelimited, as shown by the performance of user nodesconnected via WiFi 2.4 GHz.

In summary, when edge nodes have high‐qualityconnections, their service quality surpasses that of cloudnodes. Edge nodes offer lower latency and higherbandwidth compared to cloud nodes, while cloud nodes canserve as backup computing nodes to prevent edge nodesaturation and handle longer request response times.Xu et al. [34] compared the processing time of the edgeand the cloud on audio command understanding. The cloudnode is provided by Google Dialogflow service, the edgenode is set on a Raspberry Pi. When processing the FluentSpeech Commands dataset [23], the cloud nodedemonstrated long latency and unstable performance inresponse, while the edge node solution can eliminate thesedrawbacks (as Figure 2.5 shows).

Figure 2.5 Round trip time for processing audio commandon edge and cloud.We present the comparison between edge computing andcloud computing in Table 2.1. It is evident that edgecomputing is not intended to replace cloud computing butrather to complement and extend it, providing a bettercomputing platform for mobile computing, the IoT, andother applications. The edge computing model leverages

the powerful computational capabilities and vast storage ofcloud computing centers while addressing the need forprocessing large volumes of data and private informationlocally on edge devices. This helps meet requirements forreal‐time performance, privacy protection, and reducedenergy consumption. The architecture of edge computingfollows a “device‐edge‐cloud” three‐layer model, whereeach layer can provide resources and services forapplications. This allows applications to choose the optimalconfiguration for their needs.
Table 2.1 Edge computing vs. cloud computing.
Comparison
content

Edge computing Cloud
computingTargetapplications IoT or mobileapplications GeneralInternetapplicationsLocation of servernodes Edge network(gateways, Wi‐Fiaccess points, andcellular base stations,etc.)
Data center

Client–servercommunicationnetwork
Wireless local areanetwork (WLAN),5G/6G, etc.

Wide areanetwork (WAN)
Number ofserviceabledevices (Users)

Billions Millions
Types of serviceprovided Services based onlocal information Services basedon globalinformation

2.3.4 Advantages and Challenges of Edge
ComputingThe edge computing model transfers some or allcomputational tasks from traditional cloud data centers tolocations closer to where data is generated. As notedearlier in Section 1.1, the three Vs of big data—volume,velocity, and variety—highlight the unique strengths ofedge computing. In this subsection, we'll contrastcentralized big data processing, typically exemplified bycloud computing models, with edge‐focused big dataprocessing, exemplified by edge computing models. We aimto highlight the advantages of edge computing from amacroscopic perspective, illustrating why it can be a moreeffective choice in various scenarios.In the era of centralized big data processing, thepredominant data types included text, audio/video, images,and structured databases, with volumes typically at thepetabyte (PB) level. During this period, the cloudcomputing model did not require high real‐time processingcapabilities. However, in the era of edge‐oriented big dataprocessing, under the backdrop of the IoE, the types ofdata have become significantly more diverse and complex.Notably, sensory data from interconnected devices havesurged, turning what were once mere consumer devicesinto active data producers. Additionally, this era ischaracterized by a crucial demand for real‐time dataprocessing, with data volumes now exceeding zettabytes(ZB).In response to these changes, the need for real‐timeprocessing and the increase in data volume hasnecessitated migrating some computational tasks fromtraditional cloud centers to network edge devices. This shiftaims to enhance data transmission performance, ensure

timely processing, and reduce the computational load oncloud computing centers.The unique data characteristics of the edge big data erahave driven the development of edge computing models.However, the relationship between edge computing andcloud computing is not exclusive but complementary. Thisera represents a collaborative integration of both models,significantly enhancing the capabilities of edge computingin processing big data at the network's edge. Thisintegration provides an optimal software and hardwaresupport platform for the IoE. Nevertheless, the edgecomputing model still faces multifaceted challenges inmanaging data in the IoE era.In February 2017, the Computing Community Consortium(CCC) released the “NSF Workshop Report on GrandChallenges in Edge Computing,” [12] which discusses themain challenges of edge computing in areas such asapplications, architecture, capabilities and services, andtheoretical foundations of edge computing.
Application Challenges: One of the main challengesin applying edge computing includes real‐timeprocessing and communication, security and privacy,incentives and profitability, adaptive applicationdevelopment, and the development and testing ofapplication tools. Edge computing holds significantpotential in applications such as video image analysis,virtual and augmented reality, deep learning, andintelligent connectivity and communication.
Architectural Challenges: The architecture of edgecomputing encompasses several critical areas. Cage‐level security ensures that massive data centersmaintain high security unaffected by operator controlthrough comprehensive hardware and software

measures. Embracing approximation addresses theprobabilistic nature of edge data processing due toinherent uncertainties in the data itself. The trade‐offtheory balances mobility, latency, capabilities, andprivacy to optimize system performance. Dataprovenance tracks the origin, usage, and intendedusers of large‐scale data while preserving its integrity.Quality of Service (QoS) at the network edgeguarantees end‐to‐end service quality of computingresources, fostering provider collaboration throughmechanisms that define responsibility sharing, profitdistribution, and resource utilization. Lastly, testbedsoffer a cross‐domain development environmentequipped with appropriate standards and secureapplication programming interfaces (APIs) for edgecomputing applications.
Capabilities and Service Challenges: This challengeincludes resource naming, identification and discovery,standardized APIs, intelligent edge services, securityand trust, and the edge service ecosystem. Efficientlyutilizing edge computing resources largely depends onhaving a robust programming model or interface thatmakes it easier for developers to design and implementapplications for the edge computing model. Thissupport is crucial for the advancement of edgecomputing. A runtime system must provide support forthe programming model at the higher level andeffectively manage local resources at the lower level. Itdynamically handles task partitioning and subtaskdeployment, ensuring smooth execution of each subtaskat edge nodes and returning accurate results. In theedge computing model, although data storage andcomputation occur at the terminal, maintaining datasecurity and privacy is essential. Effective privacyprotection techniques must ensure that applications on

edge nodes cannot access data from other applicationsand that external applications cannot access local datawithout proper authorization. The commercial modelfor edge computing will involve key players such astelecommunication operators, equipment providers,and edge device data producers, all integral to the edgecomputing business ecosystem. The commercial valueof the edge computing industry encompasses edgeservice providers, data providers, and infrastructurebuilders. Data providers can fully leverage the value oflocal data, encouraging more edge terminals to join theedge computing framework.
Edge Computing Theory: Edge Computing addressesthe technical limitations of existing cloud computingtechnologies. However, refining the theoreticalfoundation and framework of edge computing isessential. This will provide better support for dataprocessing in the IoE and promote the application ofedge computing technologies across various criticalfields.

The challenges mentioned earlier, along with others thathave arisen throughout the development of edgecomputing, will be thoroughly explored in Chapter 5. Bothindustry and academia are actively working to overcomethese challenges, and their efforts will be discussed indetail in Chapter 5.
2.4 Summary and Practice
2.4.1 SummaryThis chapter begins with an introduction to distributedcomputing technologies, followed by an in‐depth analysis ofthe fundamental concepts, models, and key technologies of

edge computing. The edge computing model is based on abidirectional computation flow, involving crucialtechnologies such as computation offloading, 5G/6Gcommunication, new storage systems, lightweight librariesand kernels, and edge computing programming models.The relationship between edge computing and cloudcomputing is also examined, highlighting that edgecomputing is not intended to replace cloud computing butto complement and extend it; the two are mutuallyreinforcing. The integration of edge computing and cloudcomputing offers a more effective solution to the challengesof big data processing. Finally, the chapter discusses theinherent advantages of edge computing and provides abrief overview of the major challenges it faces in terms ofapplication, architecture, capabilities and services, andedge computing theory.
2.4.2 Practice Questions

1. What are the key differences between distributedcomputing and centralized computing systems?2. Describe the main functionalities of Hadoop's HDFSand how it supports distributed data storage.3. Explain the basic concept of edge computing and itskey characteristics.4. Discuss the complementary relationship between edgecomputing and cloud computing.5. Identify and explain two main challenges associatedwith implementing edge computing systems andpropose potential solutions.

2.4.3 Course Projects
1. Conduct a comparative analysis of Hadoop MapReduceand Apache Spark for big data processing. By settingup Hadoop and Spark to perform a specific data‐processing task, the performance can be measured andcompared in terms of execution time, resource usage,scalability, and ease of development and debugging.2. Design and implement a hybrid edge‐cloud computingsystem for real‐time data processing. The edge‐basedcomponent can be set up in a basic edge computingenvironment, and the cloud‐based component can use acloud service provider (e.g., AWS, Azure, and GoogleCloud).3. Explore the impact of latency on applicationperformance. Set up a cloud‐based application andmeasure its performance, then replicate the applicationin an edge computing environment and compare theresults. Utilize tools like https://prometheus.io/ formonitoring and https://grafana.com/ for visualization tomeasure and compare latency.

http://prometheus/
http://grafana/

Chapter 2 Suggested Papers
 1 Rajkumar Buyya et al. “Cloud computing and emergingIT platforms: Vision, hype, and reality for deliveringcomputing as the 5th utility”. In: Future Generation

Computer Systems 25. 6 (2009), pp. 599–616. 2 Jeffrey Dean and Sanjay Ghemawat. “MapReduce:Simplified data processing on large clusters”. In:
Communications of the ACM 51. 1 (2008), pp. 107–113. 3 Konstantin Shvachko et al. “The Hadoop distributed filesystem”. In: 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). IEEE. 2010,pp. 1–10. 4 Lanyu Xu, Arun Iyengar, and Weisong Shi. “CHA: Acaching framework for home‐based voice assistantsystems”. In: 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE. 2020, pp. 293–306. 5 Shanhe Yi et al. “LAVEA: Latency‐aware video analyticson edge computing platform”. In: Proceedings of the 2nd
ACM/IEEE Symposium on Edge Computing. 2017, pp. 1–13. 6 Quan Zhang et al. “Firework: Big data sharing andprocessing in collaborative edge environment”. In: 2016
4th IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE. 2016, pp. 20–25.

References 1 Yuan Ai, Mugen Peng, and Kecheng Zhang. “Edgecomputing technologies for Internet of Things: A

primer”. In: Digital Communications and Networks 4. 2(2018), pp. 77–86. 2 Ganesh Ananthanarayanan et al. “Real‐time videoanalytics: The killer app for edge computing”. In:
Computer 50. 10 (2017), pp. 58–67. 3 Apache. Quarks. https://quarks-edge.github.io/.Accessed: 2024‐08‐27. 4 Apache Software Foundation. Apache Storm.https://storm.apache.org/. Accessed: 2024‐07‐31. 5 Mark Baker, Rajkumar Buyya, and Domenico Laforenza.“Grids and Grid technologies for wide‐area distributedcomputing”. In: Software: Practice and Experience 32.15 (2002), pp. 1437–1466. 6 Henri E Bal, Jennifer G Steiner, and Andrew STanenbaum. “Programming languages for distributedcomputing systems”. In: ACM Computing Surveys
(CSUR) 21. 3 (1989), pp. 261–322. 7 Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli.“Mobile agent middleware for mobile computing”. In:
Computer 34. 3 (2001), pp. 73–81. 8 Philip A Bernstein. “Middleware: A model for distributedsystem services”. In: Communications of the ACM 39. 2(1996), pp. 86–98. 9 Aditya Bhardwaj and C Rama Krishna. “Virtualization incloud computing: Moving from hypervisor tocontainerization—a survey”. In: Arabian Journal for
Science and Engineering 46. 9 (2021), pp. 8585–8601.

10 Rajkumar Buyya et al. “Cloud computing and emergingIT platforms: Vision, hype, and reality for delivering

https://quarks-edge.github.io/
https://storm.apache.org/

computing as the 5th utility”. In: Future Generation
Computer Systems 25. 6 (2009), pp. 599–616.

11 Fay Chang et al. “Bigtable: A distributed storage systemfor structured data”. In: ACM Transactions on Computer
Systems (TOCS) 26. 2 (2008), pp. 1–26.

12 Mung Chiang and Weisong Shi. NSF Workshop Report
on Grand Challenges in Edge Computing.https://www.weisongshi.org/papers/shi16-nsfreport.pdf.Accessed: 2024‐07‐30.

13 Jeffrey Dean and Sanjay Ghemawat. “MapReduce:Simplified data processing on large clusters”. In:
Communications of the ACM 51. 1 (2008), pp. 107–113.

14 Marios D Dikaiakos et al. “Cloud computing: Distributedinternet computing for IT and scientific research”. In:
IEEE Internet Computing 13. 5 (2009), pp. 10–13.

15 Domo. Data Never Sleeps 11.0.https://www.domo.com/learn/infographic/data-never-sleeps-11. Accessed: 2024‐06‐18.
16 Pedro Garcia Lopez et al. “Edge‐centric computing:Vision and challenges”. In: ACM SIGCOMM Computer

Communication Review 45. 5 (2015), pp. 37–42.
17 Lars George. HBase: The definitive guide. O'ReillyMedia, Inc., 2011.
18 Sanjay Ghemawat, Howard Gobioff, and Shun‐TakLeung. “The Google file system”. In: Proceedings of the

19th ACM Symposium on Operating Systems Principles.2003, pp. 29–43.
19 Chunye Gong et al. “The characteristics of cloudcomputing”. In: 2010 39th International Conference on

https://www.weisongshi.org/papers/shi16-nsfreport.pdf
https://www.domo.com/learn/infographic/data-never-sleeps-11

Parallel Processing Workshops. IEEE. 2010, pp. 275–279.
20 Albert Greenberg et al. “The cost of a cloud: Researchproblems in data center networks”. ACM SIGCOMM

Computer Communication Review 39. 1 (2008), pp. 68–73.
21 Kyoungyoung Jee and Gang‐Hoon Kim. “Potentiality ofbig data in the medical sector: Focus on how to reshapethe healthcare system”. In: Healthcare Informatics

Research 19. 2 (2013), pp. 79–85.
22 Danny B Lange. “Mobile objects and mobile agents: Thefuture of distributed computing?” In: European

Conference on Object‐Oriented Programming. Springer.1998, pp. 1–12.
23 Loren Lugosch et al. “Speech model pre‐training forend‐to‐end spoken language understanding”. In: arXiv

preprint arXiv:1904.03670 (2019).
24 James Manyika et al. Big data: The next frontier for

innovation, competition, and productivity. McKinseyGlobal Institute, 2011.
25 Rino Micheloni. “Solid‐state drive (SSD): A nonvolatilestorage system”. In: Proceedings of the IEEE 105. 4(2017), pp. 583–588.
26 Flávio Ramalho and Augusto Neto. “Virtualization at thenetwork edge: A performance comparison”. In: 2016

IEEE 17th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM).IEEE. 2016, pp. 1–6.

27 Konstantin Shvachko et al. “The Hadoop distributed filesystem”. In: 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST). IEEE. 2010,pp. 1–10.
28 Ashish Singh and Kakali Chatterjee. “Securing smarthealthcare system with edge computing”. In: Computers

& Security 108 (2021), p. 102353.
29 Karolj Skala et al. “Scalable distributed computinghierarchy: Cloud, fog and dew computing”. In: Open

Journal of Cloud Computing (OJCC) 2. 1 (2015), pp. 16–24.
30 Blesson Varghese et al. “Challenges and opportunitiesin edge computing”. In: 2016 IEEE International

Conference on Smart Cloud (SmartCloud). IEEE. 2016,pp. 20–26.
31 VFS Global. Building Privacy into 5G Technology cannot

be an afterthought.https://www.vfsglobal.com/en/individuals/insights/building-privacy-into-5G-technology-cannot-be-an-afterthought.html. Accessed: 2024‐08‐27.
32 Tom White. Hadoop: The definitive guide. O'ReillyMedia, Inc., 2012.
33 Qishi Wu et al. “On computing mobile agent routes fordata fusion in distributed sensor networks”. In: IEEE

Transactions on Knowledge and Data Engineering 16. 6(2004), pp. 740–753.
34 Lanyu Xu, Arun Iyengar, and Weisong Shi. “CHA: Acaching framework for home‐based voice assistantsystems”. In: 2020 IEEE/ACM Symposium on Edge

Computing (SEC). IEEE. 2020, pp. 293–306.
35 Shanhe Yi et al. “LAVEA: Latency‐aware video analyticson edge computing platform”. In: Proceedings of the 2nd

https://www.vfsglobal.com/en/individuals/insights/building-privacy-into-5G-technology-cannot-be-an-afterthought.html

ACM/IEEE Symposium on Edge Computing. 2017, pp. 1–13.
36 Matei Zaharia et al. “Spark: Cluster computing withworking sets”. In: 2nd USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud 10). 2010.
37 Quan Zhang et al. “Firework: Big data sharing andprocessing in collaborative edge environment”. In: 2016

4th IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE. 2016, pp. 20–25.

3
Architecture and Components of Edge
Computing*
In Chapters 1 and 2, we explored why edge computing hasbecome a necessity in the modern digital landscape andexamined its foundational principles. Now, as we delve intothe architecture and components of edge computing, wewill uncover how this innovative approach is structurallyand functionally different from traditional centralizedmodels. This chapter will provide a comprehensive look atthe critical infrastructure, computing models, andnetworking considerations that form the backbone of edgecomputing.
3.1 Edge InfrastructureTo fully understand the capabilities and potential of edgecomputing, it is essential to first examine its underlyinginfrastructure. Unlike centralized models that rely on a fewpowerful data centers, edge computing is built on adistributed network of devices closer to the data source. Inthis section, we will explore how edge infrastructure isuniquely constructed to meet the demands of low‐latency,high‐bandwidth applications, and the various grades/layersthat define its architecture.
3.1.1 Introduction to Edge Computing
ArchitectureEdge computing is a network of decentralized computingsystems that process and analyze data near its origin,rather than relying on centralized data centers. The key

components of edge infrastructure include edge devices,which can be physical devices such as smartphones,Internet of Things (IoT) devices, or edge servers; edge datacenters, which are smaller, localized data centers thatprovide additional processing power; and communicationnetworks, which facilitate the transfer of data betweenedge nodes and the central cloud.Edge nodes are equipped with processing capabilities andare responsible for executing tasks locally, reducing theneed to send data to the cloud. Edge data centers serve aslocal hubs that can handle more intensive processing tasksand provide a buffer for data before it is sent to the centralcloud or other edge nodes. The communication networksare critical for ensuring that data can be transferredefficiently and securely between different components ofthe edge infrastructure.
3.1.1.1 Differentiation from Centralized ModelsThe primary distinction between edge infrastructure andcentralized models lies in the distribution of computationalresources and data processing. Centralized modelstypically involve large data centers that are geographicallydistant from the end‐users and devices generating data.These models can become bottlenecks due to the sheervolume of data that needs to be transmitted over longdistances, leading to increased latency and potentialnetwork congestion. In contrast, edge infrastructurereduces these issues by processing data locally orregionally, minimizing the amount of data that needs to besent to the cloud. This approach not only decreases latencybut also enhances the overall efficiency and responsivenessof applications and services.The construction goals of edge computing are as follows:

Enhancing real‐time capability: The scenario ofpervasive connectivity demands applications with anexceptionally high requirement for real‐timeperformance. In the conventional cloud computingparadigm, applications transmit data to remote cloudcenters and subsequently request processed results,thereby augmenting the system's latency. Edgecomputing is poised to augment the immediacy of dataprocessing. For instance, in the case of autonomousvehicle applications, vehicles in rapid motionnecessitate reaction times on the order of milliseconds.Any exacerbation of system latency due to networkissues could precipitate grave outcomes.
Diminishing bandwidth demand: Edge devicesincessantly generate substantial volumes of data, andthe transmission of this data in its entirety to the cloudimposes a significant strain on network bandwidth. Acase in point is the Boeing 787, which produces over 5gigabytes of data per second [13]. However, thebandwidth available between the aircraft and satellitelinks is inadequate to facilitate real‐time datatransmission.
Mitigating energy consumption: Data centers areprodigious consumers of energy. Research conductedby Sverdlik [40] indicates that by the year 2020, thecumulative energy consumption of all data centers inthe United States will have escalated by 4%, amountingto 73 billion kilowatt‐hours. As the proliferation of userapplications and the magnitude of data processedcontinue to escalate, energy consumption is poised toemerge as a constraint impeding the growth of cloudcomputing centers. The distributed processingcharacteristic of edge computing can attenuate theenergy footprint of data centers.

Safeguarding data security and privacy: Datawithin the interconnected milieu is intimatelyconnected to users' lives. For example, the installationof indoor smart network cameras in many homes meansthat video data transmitted to the cloud heightens therisk of privacy breaches. With the advent of theEuropean Union's General Data Protection Regulation(GDPR) [14], concerns regarding data security andprivacy have acquired increased significance for cloudcomputing enterprises. Edge computing offers robustmechanisms for the protection of data security andprivacy.
3.1.2 Different Grades/Layers of EdgeEdge computing is a continuum, which represents aspectrum of computational paradigms extending fromcentralized cloud infrastructures to the very peripherywhere data is generated. As the architecture of edgecomputing matures, it has evolved to encompass amultitiered structure of edges, each with distinctcharacteristics and capabilities. As shown in Figure 3.1, wewill analyze three primary categories of edge computing:on‐premises edge, network edge, and data center edge,elucidating their unique attributes and potentialapplications.

Figure 3.1 Three layers of edge.
3.1.2.1 On‐premises EdgeOn‐premises edge computing refers to the processing ofdata at the physical location of the user or data source.This type of edge computing is typically applied inscenarios that require real‐time data processing and rapidresponse. For example, in smart venues, on‐premises edgedata centers can analyze audience traffic, securitymonitoring, and environmental conditions in real time,thereby providing a safer and more personalizedexperience. In the field of intelligent connected vehicles, in‐vehicle data‐processing units can process data fromsensors to achieve functions such as autonomous driving,

collision prevention, and vehicle status monitoring. Inpublic safety video processing, cameras typically have somedata preprocessing capabilities. These cameras arecharacterized by low power consumption and limitedcomputational resources, but they generally can filter datato reduce bandwidth usage.The advantages of on‐premises edge computing aremanifold. The reduced latency allows for faster, moreefficient data processing, which is essential for time‐sensitive applications. The high reliability of localprocessing ensures that operations can continue even inthe event of network disruptions. Moreover, enhanced dataprivacy is a significant benefit, as sensitive information isprocessed and stored locally, minimizing the risk of databreaches.
3.1.2.2 Network EdgeThe network edge expands the reach of edge computingbeyond the immediate location of data generation byleveraging the infrastructure of telecommunicationsoperators. This category of edge computing is integral tothe functioning of mobile networks, where base stationsequipped with edge computing capabilities can handledata‐processing tasks that were traditionally performed incentral data centers.The network edge is particularly transformative for mobilenetwork optimization, enabling the delivery of high‐qualityservices such as video streaming and online gaming withreduced latency. The deployment of edge computing at thebase stations allows for localized content caching, whichaccelerates content delivery and enhances user experience.In the area of IoT, the network edge is instrumental inmanaging the vast array of connected devices. Byprocessing data at the edge of the network, the load on

central servers is reduced, and the responsiveness of IoTapplications is improved. This is particularly beneficial forsmart city initiatives, where numerous devices, from trafficlights to environmental sensors, require real‐time dataprocessing and analytics.
3.1.2.3 Data Center EdgeThe data center edge represents a strategic extension oftraditional data center capabilities to the edge of thenetwork. This category of edge computing is designed tobridge the gap between centralized data processing andthe localized needs of on‐premises and network edges. Datacenter edge computing is particularly adept at handlinglarge‐scale data‐processing tasks that require highcomputational power and storage capacity. By deployingresources closer to the users, data center edge computingensures that high‐demand applications, such as onlinegaming platforms and social media networks, can operatewith minimal latency and maximum performance.One of the key applications of data center edge computingis in the multiregion deployment strategies of cloud serviceproviders. By establishing edge computing nodes in variousgeographical locations, these providers can offer consistentservice quality and response times to users across theglobe, regardless of their location. Moreover, the datacenter edge is a critical component in the realm of big dataand machine learning. The proximity to end‐users enablesreal‐time data analysis and inference, providing enterpriseswith valuable insights that can inform strategic decision‐making and operational adjustments.
3.1.3 Capabilities of Edge InfrastructureEdge infrastructure represents a pivotal technologicaladvancement that facilitates the decentralization of

computing resources. By bringing computation and datastorage closer to the source of data generation, edgeinfrastructures enhance the efficiency, speed, and securityof data‐processing operations. This section aims to providemore analysis of the capabilities of edge infrastructure:data process, cache and storage, communication, andcontent delivery networks (CDNs).
3.1.3.1 Data ProcessAt the heart of edge infrastructure lies the capability fordata processing, which encompasses a range of operationscritical to the preprocessing of data. The data processincludes collection, filtering, cleansing, transformation, andaggregation. Collection is the initial step, where data fromvarious sources is gathered. Filtering then follows, allowingthe system to select relevant data points according topredefined criteria. Cleansing ensures the removal ofcorrupt or irrelevant data, thereby maintaining dataintegrity. Transformation adjusts the format or structure ofthe data to fit the requirements of downstreamapplications. Finally, aggregation consolidates data into asummarized form, making it more manageable andinsightful for analysis. Data process in edge infrastructureenables real‐time analytics and decision‐making, which iscrucial for applications such as predictive maintenance inindustrial IoT, real‐time traffic management in smart cities,and instantaneous decision‐making in financial tradingsystems.
3.1.3.2 Cache and StorageCache and storage is the foundational capability thatsupports the data lifecycle within edge infrastructures [55].It involves the temporary or permanent storage of data,which can be historical or recently generated. Thetemporary storage, or caching, allows for quick access and

retrieval of frequently used data, thereby reducing latencyand improving response times. On the other hand, thestorage of historical data is vital for applications thatrequire trend analysis, long‐term planning, or compliancewith data retention policies. The design of cache andstorage systems in edge infrastructures must considerfactors such as data durability, accessibility, and security.The use of distributed file systems, object storage, anddatabases that are optimized for edge environmentsensures that data can be stored, managed, and retrievedefficiently.
3.1.3.3 CommunicationCommunication is the glue that binds the components ofedge infrastructures and cloud servers together. Itfacilitates the forwarding of data to other nodes within theedge network or to central servers for further processing oranalysis [31]. The efficiency of communication protocolsdirectly impacts the performance of edge applications,particularly in scenarios that demand high throughput andlow latency, such as real‐time video streaming or remotehealthcare services. Edge infrastructures will supportrobust communication mechanisms that can handle diversedata types and volumes. This includes the use of both wiredand wireless communication technologies, as well as theimplementation of communication protocols that areresilient to network failures and capable of adapting tovarying network conditions.
3.1.3.4 CDNsCDN represents a specialized application of edgeinfrastructure capabilities, which is designed to optimizethe delivery of content to end‐users by replicating it acrossmultiple edge nodes. This distribution reduces the latencyassociated with content retrieval and ensures a high

availability of resources, even during peak traffic periods.The role of CDN in edge infrastructures extends beyondmere content caching. It involves sophisticated algorithmsfor content routing, load balancing, and dynamic contentoptimization. CDNs also play a critical role in enhancingthe security of content delivery through techniques such asdistributed denial‐of‐service (DDoS) protection and securecontent delivery.
3.1.4 New Progress of Edge Computing
ArchitectureIn recent years, the architecture of edge computing hasseen further development, and this chapter outlines severaltypical directions of evolution.
3.1.4.1 Edge Collaborative Consortium ArchitectureThe edge computing paradigm aspires to extend thenetwork service advantages of cloud data centers towardthe network edge, thereby bringing services closer to usersand computations closer to the source of data, offeringfaster service response times. To achieve this, edgeinfrastructure providers (EIPs) need to deploy computingand storage resources at appropriate locations within theaccess network and allow edge service providers (ESPs) toleverage the edge layer resources provided by EIPs todeliver critical services to users. Compared to the cloudcomputing model, edge nodes face issues of limitedcomputing, storage, and bandwidth resources, and thelarge‐scale construction of edge nodes also entails highconstruction and maintenance costs. Therefore, EIPs aremore inclined to establish a series of small‐scale, privateedge computing environments to meet the specific needs ofusers.

3.1.4.2 Computing‐Networking Integration
ArchitectureThe computing‐networking integration architecture hasevolved from networking, cloud networking to computing‐networking, where networking is the foundation, creatinglossless and deterministic network connections; cloudnetworking is a further advancement in networking andcloudification; and computing‐networking achievestrustworthy, efficient, on‐demand, low‐cost, and flexiblecomputing services. The development of computing‐networking integration can be summarized into threeimportant stages: intra‐data center computing‐networkingintegration, cloud‐networking integration, and cloud‐edge‐end computing‐networking integration. Currently, theacademic community in China has proposed the concept ofcomputation, which is a form of computing‐networkingintegration. Sky computing was proposed by UC Berkeley(UCB) [39], which unites multiple data centers at the cloudedge and end for collaborative optimization, alsorepresenting a form of computing power integration.
3.1.4.3 Edge‐Native ArchitectureThe introduction of the edge native concept has broughtmore agile development architectures, simplifiedoperational configurations, and new value propositions toedge layer applications. Edge native refers to thearchitectural design of applications with the deployment onthe edge network as the target to fully leverage edgecapabilities. It is two sides of the same coin with cloudnative, reflecting the continuous shift of the informationand communication technology (ICT) industry's focustoward the edge. Compared to cloud native, edge nativealso considers characteristics such as rapid deployment,continuous delivery, and the elasticity of shieldingunderlying implementations, but in response to the unique

complex networking forms, limited resources, and thediversity of computing and communication hardware at theedge, edge native places greater emphasis on features suchas integrated computation and communication, lightweight,support for heterogeneous devices, and autonomous offlineedge capabilities.
3.1.5 Open Questions
3.1.5.1 Computing AbilityIn recent years, large language models and large videomodels have made good progress in many fields, andresearchers have begun to study how to implement them inedge scenarios. However, the self‐attention mechanism[43] at the core of large language/video models leads tocomputation and memory usage growing quadratically withthe number of patches. This makes it difficult to deploylarge language/video models on the edge with limitedcomputational power and memory capacity. For example, atypical Swin‐L [28] model, contains approximately 197million parameters and requires about 104 GFLOPs for asingle forward propagation when processing a 384x384resolution image. In contrast, the NVIDIA Jetson Nano, acommon edge computing device, has a theoreticalcomputational power of only 472 GFLOPs, allowing it toprocess up to about four image frames per second underideal conditions. What is more, due to practical factorssuch as system overhead, memory bandwidth limitations,and computational efficiency, the actual processing speedis often much lower than the theoretical value. Therefore,we should focus on how to make full use of the computingresources of edge devices at different layers to meet thecomputing power requirements of large AI models.

3.1.5.2 ProgrammabilityProgramming models facilitate the rapid onboarding ofdevelopers in the creation of application products, thushastening the evolution of their respective domains. In thearea of cloud computing, user programs are authored andcompiled on the target platform, subsequently beingexecuted on cloud servers with the underlyinginfrastructure remaining opaque to the user. Amazon'sLambda service, for example, leverages such aprogramming model, enabling users to operate codewithout the prerequisite of preconfiguring or managingservers, significantly enhancing user convenience.Nonetheless, the paradigm of edge computing divergesmarkedly from that of cloud computing, exhibitingattributes of elastic management, collaborative execution,and environmental heterogeneity. Edge computingnecessitates the segmentation of applications, thedispersion of data, and the distribution of resources. As aresult, conventional programming models fall short inmeeting the demands of edge computing.In the domain of edge computing, the majority of devicesconstitute heterogeneous computing platforms, each withits unique runtime environment and data sets.Furthermore, the resources available on edge devices arerelatively limited, presenting considerable difficulties in thedeployment of user applications within edge computingenvironments. Hence, there is an imperative to explore aninnovative programming model, analogous to theMapReduce paradigm in the big data sphere, which canoffer a unified and succinct programming methodologytailored for a multitude of applications, thereby driving thetechnological progression of edge computing to newheights.

3.2 Edge Computing ModelsWith the foundation of edge infrastructure laid out, we nowturn our attention to the various computing models thatdrive edge computing. These models range from simple,device‐level processing to complex, collaborative systemsthat involve multiple nodes working together.
3.2.1 Overview and DefinitionsEdge computing is revolutionizing how data is processedand managed by bringing computation and storage closerto the data source. Two prominent paradigms in thisdomain are mobile edge computing (MEC) and cloudletcomputing (Figure 3.2). Specially, Mobile Edge Computingand multi‐access edge computing [7] are essentially thesame concept, with the term “Multi‐access EdgeComputing” being an evolution of “Mobile EdgeComputing.” MEC, standardized by the EuropeanTelecommunications Standards Institute (ETSI) [19],integrates cloud services at the edge of the network,enabling low‐latency and high‐bandwidth applications. Itprovides a platform for deploying applications and servicesthat require real‐time processing, such as augmentedreality (AR), autonomous driving, and industrialautomation. On the other hand, cloudlet computing [30], aconcept introduced by Carnegie Mellon University, focuseson providing localized, powerful computing resources nearmobile devices. Cloudlets serve as small‐scale data centersthat offer cloud‐like capabilities with minimal latency. Theyare particularly suited for offloading computation‐intensivetasks from mobile devices, thereby enhancing performanceand extending battery life.

Figure 3.2 “MEC” and “cloudlet computing.”While MEC and cloudlet computing share the common goalof bringing computation closer to the edge, they differsignificantly in architecture, deployment, and use cases.MEC is tightly integrated with the mobile networkinfrastructure, leveraging the existing cellular network toprovide seamless connectivity and service continuity. Thisintegration makes MEC ideal for telecom operators aimingto offer value‐added services and optimize networkperformance [29]. In contrast, cloudlet computingemphasizes flexibility and decentralization [2]. Cloudletscan be deployed independently of the networkinfrastructure, providing localized computing resourcesthat can be easily scaled and managed. This independenceallows for rapid deployment in diverse environments, fromurban areas to remote locations, making cloudlets highlyadaptable to varying application requirements.Furthermore, MEC's close association with telecominfrastructure ensures robust security and privacy controls,which are crucial for applications in healthcare, finance,and other sensitive sectors. Cloudlet Computing, while alsocapable of maintaining high‐security standards, often relieson end‐to‐end encryption and local data processing toprotect user data.

As the edge computing landscape evolves, advancedmodels are emerging to address the limitations of currentparadigms and harness the full potential of edgetechnologies. The rise of 5G networks is poised to furtheramplify the capabilities of edge computing models. Theultralow latency and high bandwidth of 5G will enable moresophisticated applications and seamless integration of MECand cloudlet computing. These advancements will pave theway for innovative services and applications that werepreviously unattainable due to latency and bandwidthconstraints. An emerging trend within this context is thedevelopment of collaborative edge computing models.These models emphasize the cooperation and coordinationamong multiple edge nodes to optimize resource utilization,enhance scalability, and improve fault tolerance. Byleveraging collaborative frameworks, edge nodes candynamically share workloads, balance traffic, and provideredundancy, thus ensuring more reliable and efficientservice delivery. In conclusion, the future of edgecomputing lies in the synergistic integration of variousmodels and technologies. MEC and cloudlet computing,with their unique strengths, are foundational to thisecosystem. As technology progresses, the development ofadvanced models, including collaborative edge computing,and the incorporation of AI and 5G will continue to drivethe evolution of edge computing, unlocking newpossibilities and transforming industries across the globe.
3.2.2 Collaborative Edge Computing Models
3.2.2.1 Edge‐to‐Edge CollaborationEdge‐to‐edge collaboration involves direct interaction andcoordination between edge nodes to enhance performance,reliability, and scalability [45]. This model is essential fordistributed applications requiring real‐time data processing

and resource sharing across multiple edge locations. Inedge‐to‐edge collaboration, edge nodes communicatedirectly with each other to share data, balance workloads,and provide redundancy, as shown in Figure 3.3. Thiscollaboration is facilitated through decentralized protocolsand frameworks that enable efficient resource allocationand management without relying on a central authority. Byleveraging local interconnections, edge nodes can reducelatency and improve data processing speeds. Keyapplications of edge‐to‐edge collaboration include smartcity infrastructure, autonomous vehicle networks, andindustrial IoT systems. In these scenarios, edge nodes worktogether to process vast amounts of data generated bysensors and devices, enabling real‐time decision‐makingand actions. For example, Li et al. [27] proposes the datasharing scheme among intelligent connected vehicles toensure safe driving, which is the typical scenario of edge‐to‐edge collaboration.

Figure 3.3 Edge‐to‐edge collaboration.
3.2.2.2 Edge‐to‐Device CollaborationEdge‐to‐device collaboration focuses on the interactionbetween edge nodes and end‐user devices, such assmartphones, wearables, and IoT sensors, as depicted inFigure 3.4. This collaboration model is pivotal in offloadingcomputation‐intensive tasks from devices to nearby edgenodes, thereby improving device performance and batterylife. Prominent use cases include AR applications, wherereal‐time processing is essential for rendering graphics andensuring smooth user experiences [12]. Similarly, inhealthcare, wearable devices can offload data‐processingtasks to edge nodes, enabling continuous health monitoring

and immediate response to critical health events [38].Another example is in smart homes, where edge nodesmanage and process data from various connected devicesto optimize energy usage and enhance security [51].

Figure 3.4 Edge‐to‐device collaboration.
3.2.2.3 Edge‐to‐Cloud CollaborationEdge‐to‐cloud collaboration involves the integration of edgecomputing resources with centralized cloudinfrastructures. This hybrid model leverages the strengthsof both edge and cloud computing, providing a balancedapproach to data processing and storage, as shown inFigure 3.5. The primary benefits of edge‐to‐cloud

collaboration include enhanced scalability, as cloudresources can be used to handle peak loads and extensivedata storage. Additionally, this model supports advancedanalytics and machine learning applications, where largedatasets can be processed in the cloud while critical, time‐sensitive computations are performed at the edge [50]. Forexample, Wu et al. [48] demonstrated that the hybridhuman‐AI scheme, enabled by edge‐cloud collaboration,offers a promising solution for enhancing video services. Bycombining the strengths of edge and cloud computing withhuman insights and AI capabilities, the proposed approachcan significantly improve video service quality and userexperience. However, integrating edge and cloud resourcespresents challenges, including data consistency, latency,and security. Ensuring seamless data synchronizationbetween edge nodes and cloud servers is crucial tomaintaining the integrity and accuracy of information.Latency issues must be addressed to provide timelyresponses for real‐time applications. Furthermore, robustsecurity measures are required to protect data as it movesbetween edge nodes and the cloud. For example, the studyin [20] presented an innovative hybrid DDPG‐D3QNapproach for intelligent resource allocation in edge‐cloudcollaborative networks. By combining the strengths ofDDPG and D3QN, the proposed method achieves superiorperformance in optimizing resource utilization, reducinglatency, and minimizing costs, thereby enhancing theoverall efficiency of edge‐cloud systems.

Figure 3.5 Edge‐to‐cloud collaboration.
3.2.2.4 Cloud‐Edge‐Device CollaborationCloud‐edge‐device collaboration represents a holisticapproach where tasks are distributed across cloud servers,edge nodes, and end devices based on their computationalrequirements and latency sensitivity. This layered modelensures optimal resource utilization and enhances theoverall system performance. In this collaborativeframework, cloud servers handle large‐scale dataprocessing and long‐term storage, edge nodes perform

intermediate processing and provide low‐latency responses,and devices focus on data collection and immediate userinteractions, as depicted in Figure 3.6. By strategicallydistributing tasks, this model leverages the uniquestrengths of each layer, providing a robust solution forcomplex and dynamic applications. Peng et al. [34]presented an end‐edge‐cloud collaborative computationoffloading framework designed for multiple mobile users ina heterogeneous edge‐server environment. By leveragingthe strengths of both edge and cloud servers andaddressing the heterogeneity of edge servers, the proposedapproach effectively reduces task completion time andenergy consumption, enhancing the overall performance ofmobile applications. Besides, Wang et al. [46] provided acomprehensive overview of the current landscape of end‐edge‐cloud collaborative computing for deep learning.Collaborative edge computing models play a critical role inthe evolving landscape of edge computing. Edge‐to‐edge,edge‐to‐device, edge‐to‐cloud, and cloud‐edge‐devicecollaborations each offer unique advantages and addressspecific challenges, making them essential components indeveloping efficient, scalable, and reliable edge computingsystems. As technology continues to advance, thesecollaborative models will enable innovative applicationsand drive the next wave of digital transformation.

Figure 3.6 Cloud‐edge‐device collaboration.
3.2.3 Choosing the Right Model
3.2.3.1 Factors to ConsiderWhen selecting an edge computing model, several factorsmust be taken into account to ensure that the chosensolution aligns with business needs and technicalconstraints.

Business needs: Understanding the specificrequirements and goals of the business is crucial. Edgecomputing models should be evaluated based on theirability to support these objectives. For instance,industries such as healthcare and finance, whichdemand high levels of data privacy and security, maybenefit more from models that provide robustencryption and localized data processing. In contrast,applications in smart cities or retail, where real‐timedata analytics and responsiveness are critical, mightprioritize models with low latency and high availability.
Technical constraints: Technical limitations andinfrastructure capabilities also play a significant role indetermining the appropriate edge computing model.Factors such as existing network architecture, availablebandwidth, latency requirements, and computationalpower at the edge nodes should be considered. Forexample, environments with limited networkconnectivity might favor cloudlet computing due to itsability to operate independently of the central cloud.

3.2.3.2 Implementation Challenges and SolutionsDeploying edge computing systems presents uniquechallenges that need to be addressed to ensure successfulimplementation.
Addressing deployment challenges: One of theprimary challenges is managing the distributed natureof edge nodes. Effective orchestration and managementtools are necessary to monitor, update, and maintainthese nodes. Solutions like Kubernetes, and its edge‐specific extension KubeEdge, provide robustframeworks for orchestrating containerizedapplications across edge and cloud environments. Theyenable seamless deployment, scaling, and management

of applications, thereby simplifying the complexity ofedge computing deployments.
Security and privacy: Ensuring data security andprivacy at the edge is another critical challenge.Implementing comprehensive security measures,including encryption, access control, and regularsecurity updates, is essential. Solutions should bedesigned to protect data both in transit and at rest,ensuring compliance with regulatory standards andsafeguarding against potential breaches.

3.2.3.3 Typical Edge Computing Systems and ModelsSeveral edge computing systems have been developed toaddress these challenges and provide effective models forvarious use cases.
KubeEdge: KubeEdge is an open‐source platform thatextends Kubernetes capabilities to edge nodes [49]. Itenables the deployment and management ofcontainerized applications at the edge, providing ascalable and flexible solution for edge computing.KubeEdge supports a wide range of use cases, fromindustrial IoT to smart cities, by facilitating real‐timedata processing and efficient resource utilization [44].
K3s: K3s is a lightweight Kubernetes distributiondesigned specifically for resource‐constrainedenvironments such as edge computing [35]. It aims todeliver a quick, straightforward, and efficient way toestablish a highly available and fault‐tolerant clusteracross a group of nodes focused on low–end applicationareas. K3s demonstrates minimal disk usage, likely dueto its use of SQLite database. It also exhibitsperformance benefits in most operations whencompared to other Kubernetes, and is suitable for

starting new nodes and integrating them into thecluster [4].
MicroK8s: MicroK8s is another lightweight, single‐node Kubernetes distribution designed for edgecomputing. It is easy to install and manage, thereforesuitable for edge scenarios [5].
Azure IoT Edge: Azure IoT Edge is another prominentsolution that allows for the deployment of cloudworkloads to edge devices [23]. It supports a variety ofprogramming languages and can run AI and analyticsworkloads locally, reducing latency and bandwidthusage. Azure IoT Edge is particularly useful inscenarios where intermittent connectivity is a concern,as it ensures continued operation even when theconnection to the cloud is lost.
AWS IoT Greengrass: AWS IoT Greengrass bringscloud capabilities to local devices, enabling them tocollect and analyze data closer to the source [25]. Itsupports machine learning inference, devicemessaging, and data sync with AWS cloud, making itsuitable for complex, data‐intensive applications.Greengrass's ability to operate offline and sync whenconnectivity is restored makes it a robust solution forremote and mobile environments.

3.2.3.4 New Progress of Edge ModelThe field of edge computing is continuously evolving, withsignificant advancements in edge federation and edge AImodels.
Edge federation: Edge federation is an emergingconcept where multiple edge nodes, often managed bydifferent entities, collaborate to provide a unifiedcomputing platform. This approach enhances resource

utilization, ensures better load balancing, and providesredundancy, improving overall system resilience andperformance. Edge federation is particularly beneficialin scenarios requiring high availability and robust faulttolerance, such as smart grids, autonomoustransportation systems, and large‐scale IoTdeployments. For example, Cao et al. [6] presents edgefederation, an integrated service provisioning model forthe edge computing paradigm. It aims to establish acost‐efficient platform for edge infrastructure providers(EIPs) and offer end users and edge service providers atransparent resource management scheme byseamlessly integrating individual EIPs as well asclouds.
Edge AI models: Integrating AI at the edge, or edgeAI, is a rapidly advancing field that enables real‐timedata analysis and decision‐making at the source of datageneration [37]. Edge AI models leverage thecomputational capabilities of edge devices to runmachine learning algorithms locally. This reduces theneed for constant data transmission to the cloud,thereby lowering latency and bandwidth usage. Edge AIis instrumental in applications such as predictivemaintenance, real‐time anomaly detection, andenhanced user experiences in AR/VR environments.The combination of edge computing and AI opens upnew possibilities for smart, autonomous systemscapable of making informed decisions without relyingon central cloud resources. Federated learning is a keycomponent of edge AI that enables decentralizedmachine learning [26]. In traditional AI models, data iscollected and sent to a central server for processingand model training. Federated learning, however,allows edge devices to collaboratively train modelswithout sharing raw data. Each device processes its

local data and sends only model updates to a centralserver, which aggregates the updates to improve theglobal model. This approach enhances privacy, reducesbandwidth usage, and leverages the computationalpower of edge devices [53].
3.2.4 Open QuestionsAs edge computing continues to evolve, several openquestions remain, particularly concerning the continuityand unity of edge computing models.
3.2.4.1 ContinuityThe edge computing model is envisioned as a continuum,seamlessly integrating devices, edge nodes, and cloudresources. However, current models are often dominatedby single layers, with specific tasks relegated either to thecloud, edge, or device level. Achieving continuity incomputing is a significant challenge that requires:

Dynamic orchestration: Developing advancedorchestration frameworks that can dynamically allocatetasks across the continuum based on real‐time needsand resource availability. These frameworks must becapable of fluidly shifting workloads between the cloud,edge, and devices without disrupting services.
Interoperability standards: Establishing commonstandards and protocols that ensure interoperabilitybetween different layers of the continuum. Thisincludes standardized APIs and communicationprotocols that enable seamless interaction and dataexchange across diverse systems and platforms.
Adaptive algorithms: Implementing adaptivealgorithms that can intelligently distributecomputational tasks based on factors such as latency

requirements, computational load, and networkconditions. These algorithms must be able to learn andevolve, optimizing task distribution to maintaincontinuity in service delivery.
Edge‐native applications: Encouraging thedevelopment of edge‐native applications designed toleverage the full spectrum of the edge continuum.These applications should be capable of dynamicallyadjusting their computational strategies to utilizeresources efficiently across different layers.

3.2.4.2 UnityEdge computing currently relies heavily on specificscenarios, tailored to particular applications or industries.This scenario‐based approach, while effective for targeteduse cases, raises questions about the potential for unityacross different scenarios. Achieving unity in edgecomputing involves:
Unified frameworks: Creating unified frameworksthat support a wide range of applications and usecases. These frameworks should provide the necessarytools and abstractions to accommodate diverserequirements while maintaining a consistent underlyingarchitecture.
Cross‐domain collaboration: Promoting collaborationacross different industries and sectors to developshared solutions and best practices. This collaborativeapproach can lead to the creation of versatile edgecomputing platforms that are applicable to multiplescenarios.
Modular design: Adopting a modular designphilosophy for edge computing systems, wherecomponents can be easily adapted or replaced to suit

different scenarios. This modularity ensures that corefunctionalities remain consistent while allowing forcustomization to meet specific needs.
Interdisciplinary research: Encouraginginterdisciplinary research that combines insights fromvarious fields, such as computer science,telecommunications, and industrial engineering. Thisresearch can drive the development of innovativesolutions that bridge the gap between different edgecomputing scenarios.

3.3 Networking in Edge ComputingHaving discussed the infrastructure and computing models,it's time to consider one of the most critical aspects of edgecomputing—networking. The integration of networkingwithin edge computing is crucial to achieving seamlessdata processing and communication across distributedenvironments.
3.3.1 Introduction and Development Process of
Edge Computing‐Network IntegrationIn edge computing multilayer architecture, how thenetwork communication between different layers is realizedis shown in Figure 3.7. The data centers in the cloud areconnected by the inter‐data center network. This networksupports communication between multiple data centers,enabling distributed processing and redundancy. Toprovide cloud‐like service to end users, edge devices mustbe connected to the cloud center and end users throughnetwork infrastructures, referred to as edge networking.Edge computing devices communicate with each other andwith other network components through edge networking.This layer facilitates the direct exchange of data between

edge devices, ensuring low‐latency communication fortime‐sensitive applications. The edge nodes are connectedto the cloud center through the core/metro networks. Core‐metro networks and the internet support communicationbetween cloud data centers, edge devices, and end users,providing the necessary bandwidth and speed for large‐scale data transfer [54]. Edge networks connect to accessand mobile networks, such as 5G and Cloud/Edge‐RAN, toextend the reach of computing resources to end users. Atthe same time, end devices can send data to and receivedata from the edge computing layer, enabling real‐timeapplications and services.

Figure 3.7 Edge computing and networking.Recently, the convergence of networking and edgecomputing has been accelerated by the trend of networkcloudification, highlighting the pivotal role of networking incutting‐edge computing technologies [11]. Thisconvergence promotes a comprehensive vision that

integrates resource and function management across bothnetwork and edge systems, enabling unified provisioning ofservices that span network and cloud/edge environments[10]. Traditionally, networking functions as the backbonefor data transmission, resource sharing, and connectivity inedge computing environments. It ensures efficient dataflow between devices, nodes, and cloud infrastructure,facilitating the seamless operation of distributed systems.The ongoing process of network cloudification istransitioning from the use of specially designed networkappliances to data center‐like systems built with commodityservers and storage. In these systems, virtual networkfunctions can be deployed as software instances andcomposed as service components for provisioning services.Consequently, networks are evolving from infrastructuressolely dedicated to data communications into versatileplatforms that support both networking and computingservices. Moreover, network cloudification adopts the cloudservice model for network service delivery. This approachallows data centers and edge servers, initially constructedfor edge computing, to host virtual network functions. Asdepicted in Figure 3.8, the infrastructure layer of thisframework includes several administrative domains, eachmanaged by different infrastructure providers. Theseadministrative domains encompass various technicaldomains, each specializing in a specific type of edgeinfrastructure, such as networking, computing, or storage.The virtualization layer abstracts these diverse computingand networking resources, offering them as virtualresources through the IaaS model. On the virtual functionlayer, virtual network functions (VNFs) and virtual computefunctions (VCFs) are implemented using theseinfrastructure services. These VNFs and VCFs are thenorchestrated at the service layer to form compositeservices, which support various applications.

Figure 3.8 The architectural framework for edgecomputing‐network integration.
3.3.1.1 The Development ProcessInitially, efforts in networking concentrated on integratingcomputing and network infrastructures within data centers,where high‐speed interconnections between servers andstorage systems optimized performance. This foundationalphase paved the way for further advancements innetworked computing environments. A significant drivingforce behind network cloudification is the ETSI ISGnetwork function virtualization (NFV) [52]. In the NFVarchitecture, both network and compute infrastructures areabstracted by a common virtualization layer, enabling theutilization of virtual resources to realize VNFs [8]. TheManagement and Orchestration (MANO) componenthandles the service and resource management as well asorchestration. The true potential of edge computing isharnessed through its interaction with networking,especially the orchestration between computing and

networking capabilities. Recent advancements in MEC havefacilitated the integration of MEC and NFV, allowing MECapplications and VNFs to share the same virtualinfrastructure. Moreover, the NFV MANO can be utilizedfor MEC management and orchestration [15]. The 5Gnetwork architecture, as developed by the 3GPP/5G‐PPPcommunity, highlights network slicing as a crucialmechanism for creating multitenant virtual networks onshared network‐compute infrastructures, thus supportingvarious vertical applications [1]. This 5G architectureemploys NFV combined with the SDN paradigm andleverages virtualization, softwarization, programmability,and a service‐based architecture to enable network slicing.Consequently, network slicing presents a promisingapproach for converging networking and cloud/edgecomputing [9].
3.3.2 Edge Computing‐Network ArchitecturesThe architecture of edge computing networks isfundamental to achieving efficient, scalable, and resilientsystems. This subsection explores various architecturaldesigns, examining their characteristics and implicationsfor edge computing. Understanding these architectures iscrucial for developing systems that can effectively leveragethe benefits of edge computing while addressing thechallenges of distributed networking.
3.3.2.1 Edge Network DesignEdge network design involves creating architectures thatoptimize the deployment and connectivity of edge nodes.Common designs include hierarchical models [17, 42],where edge nodes are organized in tiers based on theirproximity to data sources and end‐users, and meshnetworks, where nodes are interconnected in anonhierarchical manner, providing multiple pathways for

data transmission. Hierarchical designs often facilitateeasier management and scalability, while mesh networksenhance redundancy and fault tolerance. The choice ofdesign impacts the performance, reliability, and complexityof the network, influencing factors such as latency,bandwidth utilization, and system robustness.
3.3.2.2 Distributed NetworkingDistributed networking in edge computing spreadsprocessing and data storage across multiple nodes ratherthan relying on a centralized infrastructure [21]. Thisapproach enhances scalability and resilience bydistributing workloads, reducing single points of failure,and allowing for localized data processing. Distributednetworks are essential for applications requiring real‐timeprocessing and low latency [36], such as IoT, smart cities,and industrial automation. By decentralizing computingtasks, these architectures can adapt to varying loads andimprove the overall efficiency of the system.
3.3.2.3 Top‐Down, Service‐Enabled Convergence
ArchitecturesTop‐down, service‐enabled convergence architecturesintegrate various layers of the computing stack, fromhardware to applications, into a unified framework [33].This approach allows for seamless service delivery andresource management across the edge and cloudenvironments. By converging networking, computing, andstorage resources, these architectures support the dynamicallocation of resources based on service requirements.They facilitate the deployment of complex services that canspan multiple edge nodes and cloud resources, ensuringthat computing power, storage, and networking areefficiently utilized to meet application demands.

3.3.2.4 Computing Power‐Aware ArchitecturesComputing power‐aware architectures are designed tooptimize the use of computational resources based on thespecific needs of applications and the capabilities of edgenodes. These architectures dynamically adjust thedistribution of workloads according to the availablecomputing power, energy efficiency, and processingrequirements [22, 24, 41, 56]. By being aware of thecomputing power at each node, these architectures canenhance performance, reduce energy consumption, andensure that tasks are allocated to the most suitableresources. This approach is particularly important forapplications with varying computational demands, such asAI‐driven analytics, real‐time video processing, andcomplex simulations.
3.3.3 Current Progress and Future TrendIn recent years, substantial progress has been made in theintegration of edge computing with networkingtechnologies. Key developments include:

Enhanced edge network infrastructure:Deployment of 5G networks has dramatically improvedthe connectivity and bandwidth available for edgecomputing [16]. This infrastructure supports higherdata rates, reduced latency, and greater device density,which are critical for applications such as autonomousvehicles, AR, and IoT.
Advanced distributed networking solutions:Innovations in distributed networking, such assoftware‐defined networking (SDN) [3], named‐datanetworking (NDN) [32], and NFV, have enabled moreflexible and dynamic network configurations. Thesetechnologies allow for better resource allocation and

management, ensuring that edge nodes can efficientlyhandle diverse workloads.
Edge AI integration: The integration of AI at the edgehas progressed significantly [47]. Edge AI models cannow perform complex data processing and decision‐making locally, reducing the need for constant datatransmission to the cloud. This advancement is crucialfor applications requiring real‐time insights andactions, such as predictive maintenance and intelligentsurveillance.
Improved security mechanisms: With the increasingdeployment of edge devices, security has become aparamount concern. Current progress includes thedevelopment of robust security frameworks that protectdata integrity, confidentiality, and availability at theedge [18]. Techniques such as secure boot, trustedexecution environments, and edge‐based encryption arebeing widely adopted.

Looking ahead, several trends are expected to drive thefuture of edge computing and networking:
Edge‐to‐edge and edge‐to‐multi‐cloud integration:The future will see deeper integration between edgenetworks, enabling seamless edge‐to‐edgecommunication and collaboration. Additionally, edge‐to‐multi‐cloud architectures will emerge, allowing edgenodes to interact with multiple cloud providers,optimizing resource use and ensuring redundancy.
AI‐driven network management: The application ofAI and machine learning in network management willbecome more prevalent. AI‐driven approaches willenable predictive maintenance, automatedtroubleshooting, and intelligent resource allocation,

enhancing the overall efficiency and reliability of edgenetworks.
Expansion of computing power‐aware
architectures: Future architectures will increasinglyincorporate computing power‐awareness, dynamicallyadjusting to the available resources and the specificneeds of applications. This trend will lead to moreefficient and energy‐conscious edge computingsystems.
Development of unified edge standards: As edgecomputing continues to grow, the development ofunified standards and protocols will become crucial.Standardization efforts will facilitate interoperabilitybetween different edge devices and platforms, fosteringa more cohesive and scalable edge ecosystem.
Growth of edge ecosystems and partnerships:Collaboration between technology providers,enterprises, and industries will drive the growth ofedge ecosystems. Partnerships will enable thedevelopment of specialized edge solutions tailored tospecific industry needs, accelerating the adoption ofedge computing across various sectors.

3.4 Summary and Practice
3.4.1 SummaryThis chapter initially delineates the constituents of the edgecomputing architectural framework, classifying them basedon the vantage point of their concrete deployment intothree distinct categories: on‐premises edge, network edge,and data center edge. By fostering synergy with cloud andother peripheral devices, the edge computing architecture

demonstrates robust competencies in realms such as dataprocessing, cache and storage, communication, and CDNs.Subsequently, this chapter articulates the definition of theedge computing paradigm and elucidates four distinctcollaborative modalities intrinsic to edge computing. Theseencompass edge‐to‐edge collaboration, which facilitatesinteraction between disparate edge nodes; edge‐to‐devicecollaboration, which integrates edge capabilities with end‐user devices; edge‐to‐cloud collaboration, which harnessesthe power of cloud computing to complement edgeprocessing; and cloud‐edge‐device collaboration, whichcreates a cohesive and integrated ecosystem among clouds,edges, and devices.Finally, this chapter discusses the integration of edgecomputing with the network. It outlines how networkintegration is essential for seamless data processing andcommunication across distributed environments. Bycombining the two and developing them together, selectingthe appropriate model can enhance the overall efficiencyand effectiveness of the system.
3.4.2 Practice Questions

1. Discuss the different grades/layers of edgeinfrastructure. How do these layers contribute to theoverall efficiency and scalability of an edge computingsystem?2. Compare and contrast mobile edge computing (MEC)and multi‐access edge computing (MEC).3. Explain the role of gateways in an edge computingarchitecture.4. What are collaborative edge computing models, and inwhat scenarios are they most beneficial?

5. What factors should be considered when choosing theright edge computing model for a specific application?Provide examples to support your explanation.
3.4.3 Course Projects

1. Set up a small edge computing network anddemonstrate communication between edge devices andservers.2. Design a multilayer edge computing architecturetailored to a specific application, such as smart cities,autonomous vehicles, or smart homes, and explain howeach layer contributes to the overall architecture andmeets the application's requirements.3. Build a demo system for cloud‐edge‐devicecollaboration, with the functions of device‐side datacollection, edge‐side preprocessing data, and cloudbatch data processing.4. Implement a system for managing and monitoring edgedevices using KubeEdge.5. Evaluate a few popular Kubernetes performances anddiscuss their advantages/disadvantages. An exampleGithub repo: https://github.com/hkoziolek/lightweight-k8s-benchmarking.

https://github.com/hkoziolek/lightweight-k8s-benchmarking

Chapter 3 Suggested Papers
 1 Pedro Cruz, Nadjib Achir, and Aline Carneiro Viana. “Onthe edge of the deployment: A survey on multi‐accessedge computing”. In: ACM Computing Surveys 55. 5(2022), pp. 1–34. 2 Yun Chao Hu et al. “Mobile edge computing—A keytechnology towards 5G”. In: ETSI White Paper 11. 11(2015), pp. 1–16. 3 Heiko Koziolek and Nafise Eskandani. “LightweightKubernetes distributions: A performance comparison ofMicroK8s, k3s, k0s, and MicroShift”. In: Proceedings of

the 2023 ACM/SPEC International Conference on
Performance Engineering. 2023, pp. 17–29. 4 Fang Liu et al. “A survey on edge computing systemsand tools”. In: Proceedings of the IEEE 107. 8 (2019),pp. 1537–1562.

References 1 5G PPP Architecture Working Group. View on 5G
Architecture: Version 3.0. Tech. rep. 5G PPP Association,2019. 2 Mohammad Babar et al. “Cloudlet computing: Recentadvances, taxonomy, and challenges”. In: IEEE Access 9(2021), pp. 29609–29622. 3 Ahmet Cihat Baktir, Atay Ozgovde, and Cem Ersoy.“How can edge computing benefit from software‐definednetworking: A survey, use cases, and future directions”.

In: IEEE Communications Surveys & Tutorials 19. 4(2017), pp. 2359–2391. 4 Sebastian Böhm and Guido Wirtz. “Profiling LightweightContainer Platforms: MicroK8s and K3s in Comparison toKubernetes”. In: ZEUS. 2021, pp. 65–73. 5 Canonical Ltd. MicroK8s ‐ Zero‐ops Kubernetes for
developers, edge, and IoT. https://microk8s.io/.Accessed: 2024‐08‐29. 6 Xiaofeng Cao et al. “Edge federation: Towards anintegrated service provisioning model”. In: IEEE/ACM
Transactions on Networking 28. 3 (2020), pp. 1116–1129. 7 Pedro Cruz, Nadjib Achir, and Aline Carneiro Viana. “Onthe edge of the deployment: A survey on multi‐accessedge computing”. In: ACM Computing Surveys 55. 5(2022), pp. 1–34. 8 Richard Cziva and Dimitrios P Pezaros. “Containernetwork functions: Bringing NFV to the network edge”.In: IEEE Communications Magazine 55. 6 (2017), pp. 24–31. 9 Antonio De la Oliva et al. “5G‐TRANSFORMER: Slicingand orchestrating transport networks for industryverticals”. In: IEEE Communications Magazine 56. 8(2018), pp. 78–84.

10 Qiang Duan and Shangguang Wang. “Networkcloudification enabling network‐cloud/fog serviceunification: State of the art and challenges”. In: 2019
IEEE World Congress on Services (SERVICES). Vol.2642. IEEE. 2019, pp. 153–159.

https://microk8s.io/

11 Qiang Duan, Shangguang Wang, and Nirwan Ansari.“Convergence of networking and cloud/edge computing:Status, challenges, and opportunities”. In: IEEE Network34. 6 (2020), pp. 148–155.
12 Melike Erol‐Kantarci and Sukhmani Sukhmani.“Caching and computing at the edge for mobileaugmented reality and virtual reality (AR/VR) in 5G”. In:

Ad Hoc Networks: 9th International Conference,
AdHocNets 2017, Niagara Falls, ON, Canada, September
28–29, 2017, Proceedings. Springer. 2018, pp. 169–177.

13 Matthew Finnegan. Boeing 787s to create half a
terabyte of data per flight, says Virgin Atlantic.https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595 (2013).

14 General Data Protection Regulation GDPR. “Generaldata protection regulation”. In: Regulation (EU)
2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on
the free movement of such data, and repealing Directive
95/46/EC (2016).

15 Kai Han et al. “Application‐driven end‐to‐end slicing:When wireless network virtualization orchestrates withNFV‐based mobile edge computing”. In: IEEE Access 6(2018), pp. 26567–26577.
16 Najmul Hassan, Kok‐Lim Alvin Yau, and Celimuge Wu.“Edge computing in 5G: A review”. In: IEEE Access 7(2019), pp. 127276–127289.
17 Qiang He et al. “Pyramid: Enabling hierarchical neuralnetworks with edge computing”. In: Proceedings of the

https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595

ACM Web Conference 2022. 2022, pp. 1860–1870.
18 Size Hou and Xin Huang. “Use of machine learning indetecting network security of edge computing system”.In: 2019 IEEE 4th International Conference on Big Data

Analytics (ICBDA). IEEE. 2019, pp. 252–256.
19 Yun Chao Hu et al. “Mobile edge computing—A keytechnology towards 5G”. In: ETSI White Paper 11. 11(2015), pp. 1–16.
20 Han Hu et al. “Intelligent resource allocation for edge‐cloud collaborative networks: A hybrid DDPG‐D3QNapproach”. In: IEEE Transactions on Vehicular

Technology 72. 8 (2023), pp. 10696–10709.
21 Cheng‐Fu Huang, Ding‐Hsiang Huang, and Yi‐Kuei Lin.“Network reliability evaluation for a distributed networkwith edge computing”. In: Computers & Industrial

Engineering 147 (2020), p. 106492.
22 Yi‐Wen Hung et al. “Dynamic workload allocation foredge computing”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 29. 3 (2021), pp. 519–529.
23 David Jensen. Beginning Azure IoT Edge computing:

Extending the cloud to the intelligent edge. Apress,2019.
24 Congfeng Jiang et al. “Energy aware edge computing: Asurvey”. In: Computer Communications 151 (2020), pp.556–580.
25 Agus Kurniawan. Learning AWS IoT: Effectively manage

connected devices on the AWS cloud using services such
as AWS Greengrass, AWS button, predictive analytics
and machine learning. Packt Publishing Ltd, 2018.

26 Li Li et al. “A review of applications in federatedlearning”. In: Computers & Industrial Engineering 149(2020), p. 106854.
27 Chunlin Li et al. “Smart contract‐based decentralizeddata sharing and content delivery for intelligentconnected vehicles in edge computing”. In: IEEE

Transactions on Intelligent Transportation Systems 25.10 (2024), pp. 14535–14545.
28 Ze Liu et al. “Swin transformer: Hierarchical visiontransformer using shifted windows”. In: Proceedings of

the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 10012–10022.

29 Pavel Mach and Zdenek Becvar. “Mobile edgecomputing: A survey on architecture and computationoffloading”. In: IEEE Communications Surveys &
Tutorials 19. 3 (2017), pp. 1628–1656.

30 Satyanarayanan Mahadev et al. “Cloudlets: At theleading edge of mobile‐cloud convergence”. In: 2014 6th
International Conference on Mobile Computing,
Applications and Services (MobiCASE)). IEEE. 2014, pp.1–9.

31 Yuyi Mao et al. “A survey on mobile edge computing:The communication perspective”. In: IEEE
Communications Surveys & Tutorials 19. 4 (2017), pp.2322–2358.

32 Named Data Networking. “Named Data Networking”.In: Named Data Networking 20 (2012).
33 Kai Peng et al. “A survey on mobile edge computing:Focusing on service adoption and provision”. In: Wireless

Communications and Mobile Computing 2018. 1 (2018),p. 8267838.
34 Kai Peng et al. “End‐edge‐cloud collaborativecomputation offloading for multiple mobile users inheterogeneous edge‐server environment”. In: Wireless

Networks 30 (2020), pp. 3495–3506.
35 Rancher. Lightweight Certified Kubernetes Distribution

K3s. https://www.rancher.com/products/k3s. Accessed:2024‐08‐29.
36 Pradip Kumar Sharma et al. “SoftEdgeNet: SDN basedenergy‐efficient distributed network architecture foredge computing”. In: IEEE Communications Magazine56. 12 (2018), pp. 104–111.
37 Yuanming Shi et al. “Communication‐efficient edge AI:Algorithms and systems”. In: IEEE Communications

Surveys & Tutorials 22. 4 (2020), pp. 2167–2191.
38 Ashish Singh and Kakali Chatterjee. “Securing smarthealthcare system with edge computing”. In: Computers

& Security 108 (2021), p. 102353.
39 Ion Stoica and Scott Shenker. “From cloud computing tosky computing”. In: Proceedings of the Workshop on Hot

Topics in Operating Systems. 2021, pp. 26–32.
40 Yevgeniy Sverdlik. Here's How Much Energy All US

Data Centers Consume.https://www.datacenterknowledge.com/epower-supply/here-s-how-much-energy-all-us-data-centers-consume (2016).
41 Minh‐Tuan Thai et al. “Workload and capacityoptimization for cloud‐edge computing systems withvertical and horizontal offloading”. In: IEEE Transactions

https://www.rancher.com/products/k3s
https://www.datacenterknowledge.com/epower-supply/here-s-how-much-energy-all-us-data-centers-consume

on Network and Service Management 17. 1 (2019), pp.227–238.
42 Liang Tong, Yong Li, and Wei Gao. “A hierarchical edgecloud architecture for mobile computing”. In: IEEE

INFOCOM 2016‐The 35th Annual IEEE International
Conference on Computer Communications. IEEE. 2016,pp. 1–9.

43 Ashish Vaswani et al. “Attention is all you need”. In:
Advances in Neural Information Processing Systems 30(2017).

44 Yimeng Wang et al. “IndustEdge: A time‐sensitivenetworking enabled edge‐cloud collaborative intelligentplatform for smart industry”. In: IEEE Transactions on
Industrial Informatics 18. 4 (2021), pp. 2386–2398.

45 Rui Wang et al. “Survey of edge–edge collaborativetraining for edge intelligence”. In: Chinese Journal of
Engineering 45. 8 (2023), pp. 1400–1416.

46 Yingchao Wang et al. “End‐edge‐cloud collaborativecomputing for deep learning: A comprehensive survey”.In: IEEE Communications Surveys & Tutorials 26. 4(2024), pp. 2647–2683.
47 Dingzhu Wen et al. “Task‐oriented sensing,computation, and communication integration for multi‐device edge AI”. In: IEEE Transactions on Wireless

Communications 23. 3 (2023), pp. 2486–2502.
48 Dapeng Wu et al. “Edge‐cloud collaboration enabledvideo service enhancement: A hybrid human‐artificialintelligence scheme”. In: IEEE Transactions on

Multimedia 23 (2021), pp. 2208–2221.

49 Ying Xiong et al. “Extend cloud to edge with Kubeedge”.In: 2018 IEEE/ACM Symposium On Edge Computing
(SEC). IEEE. 2018, pp. 373–377.

50 Jiangchao Yao et al. “Edge‐cloud polarization andcollaboration: A comprehensive survey for AI”. In: IEEE
Transactions on Knowledge and Data Engineering 35. 7(2022), pp. 6866–6886.

51 Hikmat Yar et al. “Towards smart home automationusing IoT‐enabled edge‐computing paradigm”. In:
Sensors 21. 14 (2021), p. 4932.

52 Bo Yi et al. “A comprehensive survey of networkfunction virtualization”. In: Computer Networks 133(2018), pp. 212–262.
53 Chen Zhang et al. “A survey on federated learning”. In:

Knowledge‐Based Systems 216 (2021), p. 106775.
54 Yongli Zhao et al. “Edge computing and networking: Asurvey on infrastructures and applications”. In: IEEE

Access 7 (2019), pp. 101213–101230.
55 Yuhan Zhao et al. “A survey on caching in mobile edgecomputing”. In: Wireless Communications and Mobile

Computing 2021. 1 (2021), p. 5565648.
56 Fuhui Zhou and Rose Qingyang Hu. “Computationefficiency maximization in wireless‐powered mobile edgecomputing networks”. In: IEEE Transactions on Wireless

Communications 19. 5 (2020), pp. 3170–3184.
Note* This chapter is contributed by Shihong Hu andXingzhou Zhang.

4
Toward Edge Intelligence*
In this chapter, we transition from the foundational concepts of edge computing to theemerging field of edge intelligence (EI). As we explore this exciting frontier, we willexamine how artificial intelligence (AI) is integrated into edge computing systems tobenefit humans and society.
4.1 What Is Edge Intelligence?With the burgeoning growth of the Internet of Everything, the amount of data generatedby edge increases dramatically, resulting in higher network bandwidth requirements.Meanwhile, the emergence of novel applications calls for lower latency of the network.Based on these two main requirements, edge computing arises, which refers toprocessing the data at the edge of the network. Edge computing guarantees quality ofservice when dealing with a massive amount of data for cloud computing [99].At the same time, AI applications based on machine learning (especially deep learningalgorithms) are fueled by advances in models, processing power, and big data. Nowadays,applications are built as a central attribute, and users are beginning to expect near‐human interaction with the appliances they use. For example, mobile phone applications,such as those related to face recognition and speech translation, have a high requirementto run online or offline.As shown in Figure 4.1 pushed by edge computing techniques and pulled by AIapplications, EI has been pushed to the horizon. The development of edge computingtechniques, including powerful Internet of Things (IoT) data, edge devices, storage,wireless communication, and security and privacy, make it possible to run AI algorithmson the edge. AI applications, including connected health, connected vehicles, smartmanufacturing, smart home, and video analytics, require running on edge. In the EIscenario, advanced AI models based on machine learning algorithms will be optimized torun on the edge. The edge will be capable of dealing with video frames, natural speechinformation, time series data, and unstructured data generated by cameras, microphones,and other sensors without uploading data to the cloud and waiting for the response.

Figure 4.1 Motivation of edge intelligence.
4.1.1 Formal DefinitionInternational Electrotechnical Commission (IEC) defines EI as the process by which dataare acquired, stored, and processed with machine learning algorithms on the networkedge. It believes that several industries of information technology and operationaltechnology are moving closer to the edge of the network so that aspects such as real‐timenetworks, security capabilities, and personalized/customized connectivity areaddressed [49]. In 2018, [90] discussed the challenges and the opportunities that EIcreated by presenting a use‐case showing that the careful design of the convolutionalneural networks (CNNs) for object detection would lead to real‐time performance onembedded edge devices. [115] leveraged EI for activity recognition in smart homes frommultiple perspectives, including architecture, algorithm, and system.In this book, we refer to the definition from [117]: EI is defined as the capability to
enable edges to execute artificial intelligence algorithms. The diversity of edgehardware results in differences in AI models or algorithms they carry; that is, edges havedifferent EI capabilities. The capability here is defined as a four‐element tuple
Accuracy, Latency, Energy, Memory footprint which is abbreviated as ALEM. Accuracyis the internal attribute of AI algorithms. In practice, the definition of Accuracy dependson specific applications; for example, it is measured by mean average precision in objectdetection tasks and measured by the Bilingual Evaluation Understudy score metric inmachine translation tasks. To execute the AI tasks on the edge, some algorithms areoptimized by compressing the size of the model, quantizing the weight, and othermethods that will decrease accuracy. Better EI capability means that the edge is able toemploy the algorithms with greater Accuracy. Latency represents the inference timewhen the trained model is run on the edge. To measure Latency, the average latency ofmultiple inference tasks can be calculated. When running the same models, the Latency

measures the level of edge performance. Energy refers to the increased powerconsumption of the hardware when executing the inference task. Memory footprint is thememory usage when running the AI model. Energy and Memory footprint indicate thecomputing resource requirements of the algorithms.There are two types of collaboration for EI: cloud‐edge and edge‐edge collaboration. Inthe cloud‐edge scenario, the models are usually trained on the cloud and thendownloaded to the edge, which executes the inference task. Sometimes, edges willretrain the model by transfer learning based on the data they generate. The retrainedmodels will be uploaded to the cloud and combined into a general and global model. Inaddition, researchers have focused on distributed deep learning models over the cloudand on the edge. For example, DDNN [103] is a distributed deep neural networkarchitecture across the cloud and edge. Edge–edge collaboration has two aspects. First,multiple edges work collaboratively to accomplish a compute‐intensive task. For example,several edges will be distributed when training a large deep‐learning network. The taskwill be allocated according to the computing power. Second, multiple edges worktogether to accomplish a task with different divisions based on different environments.For example, in smart home environments, a smartphone predicts when a user isapproaching home, triggering the smart thermostat to set the suitable temperature forthe user. Individually, every task is particularly difficult, but coordination within the edgemakes it easy.As shown in Figure 4.2, the data generated by the edge come from different sources,such as cars, drones, smart homes, etc., and can be used in three different ways:

Figure 4.2 Dataflow of edge intelligence.
First is uploading the data to the cloud and training based on the multisource data.When the model training is completed, the cloud will do the inference based on theedge data and send the result to the edge. This data flow is widely used in traditionalmachine intelligence.Second is executing the inference on the edge directly. The data generated by theedge will be the input of the edge model downloaded from the cloud. The edge will do

the inference based on the input and output of the results. This is the current EI dataflow.Third is training on the edge locally. The data will be used to retrain the model on theedge by taking advantage of transfer learning. After retraining, the edge will build apersonalized model that has better performance for the data generated on the edge.This will be the future data flow of EI.
EI involves a great deal of knowledge and technology, such as the design of AIalgorithms, software and systems, computing architecture, sensor networks, and so on.Figure 4.3 shows the overview of EI. To support EI, many techniques have beendeveloped, called EI techniques, which include algorithms, software, and hardware.Representative EI techniques will be introduced in the remainder of the chapter.

Figure 4.3 Edge intelligence.
4.2 Hardware and Software SupportEI relies heavily on hardware and software advancements to function effectively andbring AI capabilities to the edge of the network. In this section, we'll explore the specifichardware components, such as the specialized processors and accelerators, that areessential for enabling AI at the edge. We'll also discuss the software frameworks andplatforms that support the development and deployment of EI.
4.2.1 HardwareUnlike traditional cloud centers, edge devices are often supplied with constrainedcomputation and power resources and must accommodate different end‐user

requirements. In Table 4.1, we list typical hardware for deploying EI, each servingdifferent functions based on their strengths.
Table 4.1 Comparison of hardware types for edge AI applications: performance,efficiency, and suitability.
Hardware
type

Sub‐type Examples AI
performance

Power
efficiency

Latency Key
applicationsASIC TPU Google TPU,Google EdgeTPU

Excellent forAI inference,optimized forTensorFlow
Very low Real‐time AIinference,imageclassification,objectdetectionVPU IntelMovidiusMyriad X

High forvision‐centricAI tasks
Low Facialrecognition,visual SLAM,low‐powerobjectdetectionNeuromorphicchip IBMTrueNorth,Intel Loihi

Efficient forbrain‐inspiredAI models
Very low Cognitivecomputing,robotics,sensoryprocessingFPGA XilinxUltraScale+,Intel Stratix

High,customizablefor specific AIworkloads
Low tomoderate Custom AImodels,adaptive AItasksGPU JetsonNano, AGXXavier

High,particularlyin parallelprocessingtasks
Medium Deeplearning,autonomoussystems, AIresearch

: extremely high; : very high; : moderate; : high.
4.2.1.1 Application‐Specific Integrated Circuit (ASIC)An application‐specific integrated circuit (ASIC) is an integrated circuit that is custom‐designed for a particular task or application. ShiDianNao [32] first proposed that the AIprocessor should be deployed next to the camera sensors. The processor accesses theimage data directly from the sensor instead of dynamic random access memory (DRAM),which reduces the power consumption of the sensor data loading and storing.ShiDianNao is 60 times more energy efficient and 30 times faster than the previous state‐of‐the‐art AI hardware, so it will be suitable for EI applications related to computervision. Efficient inference engine (EIE) [40] is an efficient hardware design forcompressed deep neural networks (DNN) inference. Using multiple methods to improveenergy efficiency, such as exploiting the sparsity of DNN and sharing the weights ofDNN, it is deployed on mobile devices to process some embedded EI applications. Inindustry, many leaders have published some dedicated hardware modules to accelerateEI applications; for example, IBM TrueNorth [83] and Intel Loihi [26] are bothneuromorphic processors.

Google Cloud introduced Edge TPU (Figure 4.4) customized for ML inference on edgedevices [35]. Microsoft's Azure Sphere is a security‐focused microcontroller thatincorporates an ASIC designed to provide hardware‐based security features for IoTdevices, ensuring robust protection against various security threats [82]. AWSSnowball [3] and Snowcone [4] are portable, rugged, and secure edge computing devicesthat collect, process, and move data to AWS from disconnected environments.

Figure 4.4 TPU.Another significant development is Intel's Movidius Myriad X. This vision processing unit(VPU) (Figure 4.5) integrates 16 SHAVE (Streaming Hybrid Architecture Vector Engine)cores and a dedicated neural compute engine for deep learning inference. The Myriad Xdelivers over 1 TOPS of computational performance, enabling sophisticated AIapplications such as object detection, facial recognition, and autonomous navigation onedge devices.

Figure 4.5 VPU.NVIDIA has also made significant strides with its Jetson Nano, a small yet powerful AIcomputer that delivers 472 GFLOPs of computational power. It supports multiple neuralnetworks in parallel for applications such as image classification, object detection, and

speech processing. The Jetson Nano (Figure 4.6) is designed to run on just 5–10 watts ofpower, making it suitable for embedded IoT applications and autonomous machines(Figure 4.9).

Figure 4.6 Jetson Nano.

Figure 4.7 TrueNorth chip.IBM's TrueNorth neuromorphic chip represents a different approach to ASIC design(Figure 4.7). Inspired by the human brain, TrueNorth is designed to process informationin a highly parallel and efficient manner, mimicking the brain's neural networkarchitecture. This chip excels in applications requiring real‐time pattern recognition andsensory processing, such as robotics and cognitive computing.Apple also proposed the Apple Neural Engine (ANE), which is designed to acceleratemachine learning tasks within Apple's suite of mobile devices. Introduced as part of the

A11 Bionic chip and continually evolving in subsequent models, the ANE is a specializedASIC designed to accelerate neural network operations. The ANE enhances performance,reduces latency, and maintains user privacy by enabling local processing of tasks such asvoice recognition, facial recognition, and augmented reality.
4.2.1.2 Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units
(GPUs)Several studies have deployed general‐purpose field programmable gate arrays (FPGAs,as shown in Figure 4.8) or graphics processing units (GPUs) for EI application scenarios,such as speech recognition, image classification, and natural language processing (NLP).Both Intel and Xilinx are pioneer companies in the field of FPGA research. For example,Xilinx has introduced a series of specialized adaptable accelerator solutions catering todifferent AI tasks. The Alveo accelerator cards are designed for high‐performance datacenter applications, providing powerful acceleration for workloads such as machinelearning inference (especially deep learning) and video processing. On the other hand,Xilinx also launched multiprocessor system‐on‐chip (MPSoC) devices, which are ideal foredge computing applications. These MPSoC devices combine arm‐based processors andprogrammable logic gates, making them highly suitable for AI inference tasks at the edgewhere power efficiency and real‐time processing are crucial. The series of MPSoC FPGAsare highly used for deep learning models due to its robust software ecosystem thatincludes support for high‐level programming languages. Similarly, Intel has developedthe Agilex and Stratix 10 FPGA families, which are aimed at high‐performanceacceleration tasks and are supported by a Quad‐core ARM Cortex‐A53 processor. In thecurrent scenario, Xilinx has a mature and widely used development environment,particularly with its Vivado Design suite, which is considered user‐friendly. ESE [41] usedFPGAs to accelerate the LSTM model on mobile devices, which adopted the load‐balance‐aware pruning method to ensure high hardware utilization and the partitionedcompressed LSTM model on multiple processing elements (PEs) to process the LSTMdata flow in parallel. The implementation of ESE on Xilinx FPGA achieved higher energyefficiency compared with the CPU and GPU. Biookaghazadeh et al. used a specific EIworkload to evaluate the performance of FPGA and GPU on edge devices. They comparedsome metrics, such as data throughput and energy efficiency, between the FPGA andGPU. The evaluation results showed that the FPGA is more suitable for EI applicationscenarios [13].

Figure 4.8 FPGA.In industry, NVIDIA published the Jetson AGX Xavier module (Figure 4.9) [87], which isequipped with a 512‐core Volta GPU and an 8‐core ARM 64‐bit CPU. It supports CUDAand TensorRT libraries to accelerate AI applications in several scenarios, such as robotsystems and autonomous vehicles. In 2022, NVIDIA also introduced the Jetson Orinbox [85], which provides even higher performance and efficiency and supports moreadvanced AI models, making it suitable for complex edge AI applications.

Figure 4.9 Nvidia AGX Xavier.
4.2.2 SoftwareWhile hardware forms the foundation of edge intelligence by providing the necessarycomputational power and specialized processing capabilities, the software enablesadvanced functionality, transforming raw processing power into intelligent, efficient, andscalable edge solutions.
4.2.2.1 PackagesIn order to execute AI applications efficiently, many deep learning packages arespecifically designed to meet the computing paradigm of AI algorithms, such asTensorFlow, Caffe, MXNet, and PyTorch. However, these packages are focused on thecloud and are not suitable for the edge. In the cloud, packages use a large‐scale datasetto train deep‐learning models. One of the main tasks of packages is to learn the numberof weights in each model layer. They are deployed on the high‐performance platforms,such as GPU, CPU, FPGA, and ASIC (TPU [54]) clusters. On the edges, due to limitedresources, packages do not train models in most cases. They carry on inference tasks byleveraging the models which have been trained in the cloud. The input is small‐scale real‐time data and the packages are installed on heterogeneous edges, such as edge servers,mobile phones, Raspberry Pi, and laptops.To support processing data and executing AI algorithms on the edges, some top‐leadingtech giants have released several edge‐based deep learning packages. Compared withcloud versions, these frameworks require significantly fewer resources but behave almostthe same in terms of inference. TensorFlow Lite [104] is TensorFlow's lightweightsolution designed for mobile and edge devices. It leverages many optimizationtechniques, including optimizing the kernels for mobile apps, prefused activations, andquantized kernels to reduce the latency. ONNX (Open Neural Network Exchange) [89]runtime is another open‐source performance‐focused inference engine for machine

learning models. It is a part and parcel of the ONNX ecosystem launched by Facebookand Microsoft. It supports models in the ONNX format, which is a cross‐platformstandard designed to make models portable across different hardware and software.ONNX runtime is optimized for a variety of platforms, including Jetson Nano, XilinxFPGAs, NPU, and Nvidia AGX. Apple published CoreML [11], a deep learning packageoptimized for on‐device performance to minimize memory footprint and powerconsumption. Users are allowed to integrate the trained machine learning model intoApple products, such as Siri, Camera, and QuickType. Facebook developed QNNPACK(Quantized Neural Networks PACKage) [77], which is a mobile‐optimized library for high‐performance neural network inference. It provides an implementation of common neuralnetwork operators on quantized 8‐bit tensors. Moreover, Google developedXNNPACK [34] for highly efficient floating‐point neural network inference on ARM, x86,webAssembly, and RISC‐V platforms. XNNPACK serves as a low‐level performanceprimitive aimed at accelerating high‐level machine learning frameworks, includingTensorFlow Lite, TensorFlow.js, PyTorch, ONNX Runtime, and MediaPipe, rather thanbeing designed for direct usage by deep learning researchers. Microsoft introducedAzure IoT Edge [81], which enables deployment and management of cloud‐nativeworkloads (e.g., AI, Azure services, or user's own business logic) on IoT devices. Intel'sOpenVINO toolkit is an open‐source toolkit that accelerates AI inference with lowerlatency and higher throughput while maintaining accuracy [48]. It converts and optimizesmodels trained using popular frameworks such as TensorFlow and PyTorch, and thendeploys the optimized models across a mix of Intel®hardware and environments, on‐premise and on‐device, in the browser, or in the cloud.In addition to the edge‐optimized packages such as TensorFlow Lite and Core ML, VitisAI [9] by Xilinx stands out as a crucial development by developing AI applications onXilinx's FPGA and SOC. Vitis AI leverages the hardware acceleration capabilities of Xilinxdevices, offering model optimization, compiler, runtime, and quantization. Vitis AIincludes a comprehensive suite of libraries and APIs that support popular machinelearning frameworks like TensorFlow and PyTorch, authorizing developers to seamlesslyimport and optimize their pretrained models (AI model zoo) for execution on Xilinxplatforms. Furthermore, Vitis AI provides an AI compiler, including high‐level networkdescription into low‐level hardware instructions, and an AI profiler like Vaitrace forevaluating the efficiency of the inference. Additionally, FINN (Fast, Intuitive NeuralNetwork compiler) [106] is part of the broader ecosystem of tools for acceleratingmachine learning applications on Xilinx hardware. FINN was developed by the AI Lab ofAMD Research & Advanced Development. FINN delivers an end‐to‐end pipeline for takinga neural network from a quantized neural network and transforming it into an FPGA‐compatible format, optimizing it for performance. It is not a generic DNN accelerationsolution but relies on codesign and design space for quantization and parallelizationtuning to optimize a solution. This compiler is still under continuous development but canbe an excellent asset for FPGA research for AI solutions.Meanwhile, cloud‐based packages are also starting to support edge devices, such asMXNet [21] and TensorRT [86]. MXNet is a flexible and efficient library for deeplearning. It is designed to support multiple platforms (either cloud platforms or edgeones) and execute training and inference tasks. TensorRT is a platform for high‐performance deep learning inference, not training, and will be deployed on the cloud andedge platforms. In addition to the frameworks mentioned earlier, Amazon SageMakerNeo [6] is another tool for deploying machine learning models on edge devices. Itoptimizes the trained machine learning models for inferences according to the targeteddevice and then runs those on edge devices faster with no loss in accuracy. AmazonSageMaker Neo aims to minimize the time researchers spend manually tuning models toperform efficiently on hardware‐constrained devices. Amazon SageMaker Neo utilizes

Apache TVM, partner‐provided compilers, and acceleration libraries to deliver the bestavailable performance for a given model and hardware target. Several techniques,including weight and activation precision calibration, layer and tensor fusion, kernelautotuning, and multistream execution are used to accelerate the inference process.Zhang et al. [116] made a comprehensive performance comparison of several state‐of‐the‐art deep learning frameworks on the edges and evaluated the latency, memory footprint,and energy of these frameworks with two popular deep learning models on different edgedevices. They found that no framework could achieve the best performance in alldimensions, which indicated that there was a large space to improve the performance ofAI frameworks on the edge. It is very important and urgent to develop a lightweight,efficient, and highly scalable framework to support AI applications on the edges.
4.2.2.2 Running EnvironmentTo effectively support EI tasks, EI running environments must be customized andlightweight, ensuring deployment across various heterogeneous hardware platforms.They should manage diverse computational resources efficiently, handling typicalworkloads such as model inference and collaborative model training. The runningenvironment needs to support deep learning packages, ensuring compatibility with thecommon frameworks and tools used in EI. In addition, it must handle real‐time dataprocessing from various sources, such as environmental sensors, cameras, and LiDAR,which often possess spatial and temporal attributes. Ensuring fault tolerance and optimalresource utilization is crucial, as edge computing environments require high reliabilitydue to their proximity to data sources and limited computational power.Taking the aforementioned requirements into account, some studies can be recognized aspotential systems to support EI:

TinyOS: TinyOS [60] is an application‐based operating system for sensor networks.The biggest challenge TinyOS has solved is to handle concurrency‐intensiveoperations with small physical size and low power consumption [43]. TinyOS takes anevent‐driven design which is composed of a tiny scheduler and a components graph.The event‐driven design makes TinyOS achieve great success in sensor networks.However, enabling effective computation migration is still a big challenge for TinyOS.
ROS and ROS2: Robot Operating System (ROS) [92] is recognized as a typicalrepresentative of the next generation of mobile operating systems designed to copewith the IoT. Originally designed to manage communication in heterogeneous roboticsystems, ROS has evolved to be a versatile tool for edge computing applications. InROS, the process that performs computations is called a node. For each service, theprogram or features are divided into several small pieces and distributed acrossmultiple nodes, with the ROS topic defined to share messages between these nodes.This communication‐based design gives ROS high reusability for robotics softwaredevelopment. ROS 2.0 [76] enhances its capabilities by offering Data DistributionService (DDS) [27] for improved communication efficiency and addressing the issueof ROS's dependency on the master node. The active community and the formation ofa robust ecosystem put ROS in a good position to be widely deployed for edgedevices, including industrial robots [8, 51, 95], autonomous vehicles (e.g., Autoware)and unmanned aerial vehicles (e.g., PX4 Autopilot [91]). However, neither ROS norROS2 is fundamentally designed for resource allocation and computation migration,presenting challenges in the implementation of EI services directly with them.
AWS IoT Greengrass: AWS IoT Greengrass [5] is an IoT open‐source edge runtimeand cloud service developed by Amazon that helps users perform data managementand deploy AI applications on millions of devices in homes, factories, vehicles, andbusinesses.

OpenVDAP: OpenVDAP [114] is an edge‐based data analysis platform for Connectedand Autonomous Vehicles (CAVs). OpenVDAP is a full‐stack platform that containsDriving Data Integrator (DDI), Vehicle Computing Units (VCU), edge‐based vehicleoperating system (EdgeOSv), and libraries for vehicular data analysis (libvdap).Inside OpenVDAP, VCU supports EI by allocating hardware resources according to anapplication and libvdap supports EI by providing multiversions of models toaccelerate model inference.
EdgeOS_H: EdgeOS_H [17] is an edge operating system designed for smart homeapplications. It is deployed at the edge of the home network and connects smarthome devices and applications through a three‐layer functional abstraction. Thissystem addresses the diverse computing requirements of various edge hardwaredevices in smart homes. It emphasizes flexibility, scalability, isolation, and reliabilityin service management. The Phi‐Stack architecture, which it incorporates, furtherenhances these capabilities. Additionally, the lightweight REST engine and Luainterpreter in PhiOS enable the execution of computing tasks on edge devices withinthe home network.
Amazon sageMaker Edge: Amazon sageMaker Edge [7] is a broader AmazonsageMaker suite that deploys, manages, and runs machine learning models on edgedevices. SageMaker edge compiler compiles the trained model into an executableformat that applies performance optimizations and can make the model run up to 25 faster on the targeted hardware. The edge manager also provides a dashboard tounderstand the performance of models on each device along with overall fleet health.SageMaker edge supports most of the machine learning frameworks such as MXNet,ONNX, and Keras.
PYNQ: PYNQ (python productivity for Zynq) [112] is an open‐source python‐basedruntime environment designed for Xilinx Zynq SoCs, which can integrate both FPGAand ARM processors. Pynq employs the FPGA for hardware‐accelerated tasks withoutwriting traditional hardware description languages like Verilog or VHDL. It alsoprovides a Jupyter Notebook interface for interacting with FPGA hardware, enablinghigh‐level Python code. It includes libraries and APIs that abstract the complexity ofFPGA programming, enabling real‐time data processing, machine learning inference,and other computational tasks instantly on edge devices. Moreover, PYNQ enablesrapid prototyping to deploy the model on FPGA, which means it helps researcherswho do not have deep expertise in hardware design languages. Overall, PYNQ makesFPGA technology more accessible, enabling to harness the power of programmablehardware.

4.2.3 ContainerThe variety of packages and runtime environments, on the one hand, enables EI to handlediverse tasks, but on the other hand, it complicates the deployment of EI, considering it istypically a distributed system involving heterogeneous devices. Containers, whichfacilitate the deployment and management of EI, are therefore essential.A container is a software component that includes all the necessary elements for runningspecific applications in any environment. It packages the runtime code, the executionenvironment, required packages and libraries, and any other dependencies of theapplications into executable software units, making them portable across a variety ofcomputing environments.Figure 4.10 illustrates how containers help deploy and execute different applications.Since containers share the OS kernel, they do not require a full OS for each application,which keeps the size of container files small and makes container execution resource‐efficient. Furthermore, because all dependencies are bundled with the application in the

container, migrating applications (from the development environment to the productionenvironment or between different computing platforms) requires minimal changes.

Figure 4.10 Container.A container engine, also known as a container runtime, is a software program thatcreates and manages containers based on container images. It acts as an intermediarybetween the containers and the operating system, providing and managing resources forthe application. Container engines can also process user requests, such as command lineoptions and image pulls. Some widely used container engines include: Docker [80],RedHat RKT [94], Canonical LXD [16], and Google Kubernetes Engine [36].
4.3 Technologies Enabling Edge IntelligenceNow, we turn our focus to the cutting‐edge technologies that enable these systems tooperate efficiently in resource‐constrained environments.
4.3.1 Compression TechniquesTo enable deep learning models in edge environments, where computational resourcesare limited, a range of compression techniques are employed. Compression techniqueaccelerates the speed of model inference, and are roughly categorized into four groups:parameter sharing and pruning methods, quantization, low‐rank approximation methods,and knowledge distillation methods [23, 38].
4.3.1.1 Parameter Sharing and Pruning
Parameter sharing and pruning control the capacity and storage cost by reducing thenumber of parameters that are not sensitive to performance. In the parameter‐sharingmechanism, each neuron in the neural network does not independently have a weight

matrix. Instead, it shares the same weight matrix. This greatly reduces the number ofparameters, decreases the complexity, and improves the model's generalization ability toinput data. In CNNs, parameter sharing is a fundamental aspect of convolutional layers.Each convolutional layer processes input data through convolution operations, utilizing ashared parameter matrix to produce the output. Unlike traditional neural networks whereeach neuron has its own set of parameters, CNNs share these parameters across theentire layer. This parameter‐sharing mechanism not only reduces the complexity of thenetwork but also enhances its generalization capabilities. Furthermore, parametersharing imparts translational invariance to the CNN, ensuring that the network's outputremains consistent even when the input undergoes slight shifts or variations. Thisattribute is particularly advantageous in tasks such as image recognition, where CNNshave demonstrated exceptional performance. In recent years, parameter sharing has nolonger been referred to solely as a compression technique; researchers and developershave started considering it a fundamental architecture within neural networks. Followingthe strategy of parameter sharing, the pruning technique is one of the most popularcompression technologies. While Han et al. [38] introduced the method of pruning amodel without losing the model accuracy. He found physiological evidence to supporttheir pruning method. In mammalian physiology, it has been observed that duringinfancy, a large number of synaptic connections are formed. As the organism matures,the less frequently used synapses degrade and eventually disappear. Pruning steps weredefined, and well‐established research by him into three steps generally. First, the initialmodel is trained using standard methods, with the author positing that the magnitude ofthe weights indicates their importance. Next, weights below a certain threshold in theinitial model are set to zero, effectively pruning the connections. Finally, the model isretrained to allow the remaining weights to compensate for any loss in accuracy causedby pruning. To achieve a satisfactory balance between compression ratio and accuracy,the pruning and retraining steps are repeated multiple times. To extend it, there are twomain approaches: unstructured pruning and structured pruning. As illustrated inFigure 4.11, pruning nodes or neurons are generally categorized as structured pruning,whereas pruning individual weights/connections are classified as unstructured.Unstructured pruning operates at a finer granularity, allowing any proportion ofredundant parameters to be removed without restriction. However, this can result in anirregular network structure post‐pruning, potentially reducing the effectiveness of modelacceleration. In other words, unstructured pruning selects parameters based on theirimportance rather than specific structural units. Conversely, structured pruning works ata coarser granularity, where the smallest pruning unit is a combination of parameterswithin a filter. By setting thresholds and evaluating the contribution of filters or featuremaps, entire filters or certain channels below the threshold are removed, thus narrowingthe network structure. This approach can achieve effective acceleration on existingsoftware/hardware but may lead to a drop in model prediction accuracy. Therefore, fine‐tuning the pruned model is necessary to compensate and restore its performance. Chenet al. [22] presented a HashedNets weight‐sharing architecture that groups connectionweights into hash buckets randomly by using a low‐cost hash function, where allconnections of each hash bucket have the same value. The values of the parameters areadjusted using the standard backpropagation method [110] during training. Han etal. [39] pruned redundant connections using a three‐step method. First, the networklearns which connections are important and then prunes the unimportant connections.Finally, they retrain the network to fine‐tune the weights for the remaining connections.

Figure 4.11 Overview of pruning.In addition to the well‐known unstructured and structured pruning methods, severalother techniques have recently gained attention, although most are still categorizedunder structured pruning. One of them is filter pruning. Filter pruning focuses onremoving the specific filters (or channels) of a neural network. The idea of filter pruningis that not all the channels equally contribute to the model's performance; some may beredundant or less important. This results in a more compact model with fewerparameters, which reduces both the memory footprint and computational requirementduring inference. The most common approaches in filter pruning include the rankingfilter based on their importance using metrics like L1/L2 norm [61], Taylor Expansion‐based Pruning [84] or evaluating their removal on the loss function. Luo et al. [74]introduced a filter pruning based on the statistics information from the next layer named
Thinet. Additionally, layer‐wise pruning is a more aggressive approach than filterpruning. Instead of removing the individual filters, entire layers of the network arepruned. It eliminated not just the filters but also the associated computations andparameters for a whole layer. For instance, layers that contribute minimally to the finaloutput or that have a high degree of redundancy might be pruned. Recent works by Chenand Zhao [19] introduced a layer‐wise pruning based on feature representation designedto reduce the complexity of CNNs while maintaining accuracy. Unlike the previoustraditional pruning methods that focus on connection or filter‐wise using weightinformation, they identified the redundant parameters by analyzing the features learnedwithin convolution layers and executing the pruning process at the layer level. However,this approach requires meticulous consideration and evaluation because removing entirelayers can significantly impact the network's architecture and potentially harm its abilityto learn and generalize.In recent times, pruning has not only been applied to CNNs but also, again, popularity tovision transformer (ViT) models. Hou and Kung [45] explored the multidimensional ViTcompression approach that simultaneously targets redundancy reduction across theattention head, neuron, and sequence dimensions. They introduced a statisticaldependence‐based pruning criterion to identify and remove ineffective componentsacross multiple dimensions. They then optimized the pruning strategy to maximize modelaccuracy within a computational budget, using an adapted Gaussian process search withexpected improvement. Additionally, SP‐ViT [119] incorporated a soft pruning methodthat reduced less informative tokens into a package token rather than removing thementirely, as identified by the selective module. It achieved significant computationalresults on vanilla transformers.

4.3.1.2 Quantization
Quantization with the rapid application of deep learning technology in various fieldssuch as computer vision, natural language processing, and autonomous driving, aplethora of deep learning‐based network models have emerged. However, these neuralnetwork models are large in parameters and complex in structure, making them suitablefor inference on conventional GPUs but not for deployment on mobile and embeddeddevices. In real‐world scenarios, these complex models often need to be deployed on low‐cost embedded devices, creating a performance gap. Model quantization has emerged asa solution to effectively address this performance gap. Quantization is a modelcompression technique that converts floating‐point storage (and computation) to integerstorage (and computation). During training, complex and high‐precision models arenecessary to capture subtle gradient changes for optimization. However, high precision isnot needed during inference as network parameters are fixed and no longer adjustedbased on the loss function. Many parameters in the network are not critical or do notrequire high‐precision representation. Moreover, experiments have shown that neuralnetworks are robust to noise, and quantization can be considered as a form of noise. Thismeans we can simplify the model before deployment by reducing the precision ofrepresentation. Most deep learning training frameworks default to using 32‐bit floating‐point numbers for parameter representation and computation. The basic idea of modelquantization is to replace the original floating‐point precision with lower precision, suchas 8‐bit integers. Simply put, a weight that originally required a float 32 representationcan be represented using Int8 after quantization. Figure 4.12 illustrates the overview ofconverting a neural network floating point precision to Int8 precision.

Figure 4.12 Overview of quantization.Current mainstream quantization methods are divided into linear quantization andnonlinear quantization. Linear quantization is the most commonly used method,particularly in the industry, where 8‐bit quantization schemes are widely adopted. Linearquantization establishes a data mapping between high‐precision floating‐point values andlow‐precision fixed‐point values. In nonlinear quantization, various “nonlinear” mappingfunctions are used, typically selected based on the characteristics of weight inputdistribution in different scenarios. A notable feature of nonlinear mapping is its ability tomap weights of varying importance to different quantization ranges. For instance, ifweight inputs are primarily distributed within a certain range, a nonlinear function canmap these weights to a larger quantized range, enhancing the training process'ssensitivity to the primary weight distribution. Another typical nonlinear quantizationmethod involves using clustering techniques, such as k‐means, during the initial modelquantization phase. Weights are grouped into several clusters, and each cluster isquantized to the same fixed value to achieve the quantization effect. The foundationallinear and nonlinear quantization methods can be performed using either quantization‐

aware training (QAT) or post‐training quantization (PTQ) methods. Figures 4.13 and 4.14illustrate the general workflow of the QAT and PTQ quantization. In general, QATintegrates into the neural network training process, allowing the model to adjust to theconstraints of low‐precision athematic while being trained. During QAT, the weights andactivations are quantized during the forward pass, simulating the conditions under whichthe model will operate after deployment. The backward pass uses full precision (FP32) toensure accurate gradient updates. The model is also fine‐tuned to minimize the accuracyloss, and quantized parameters are carefully calibrated to preserve performance.Contrarily, PTQ applies after the models have fully trained without retraining. Thismethod often applies fine‐tuning the quantized model using a calibration dataset (fromtraining datasets) to mitigate potential accuracy loss. Both techniques can be utilizeddepending on the task one wants to perform or the types of hardware used. QAT usuallyrequires more time due to a full training step, whereas PTQ is faster and morestraightforward as it is applied after the model has been fully trained. PTQ is ideal whenthe original data is limited or unavailable. On the other hand, QAT learns to operateunder quantization constraints, it can better handle the potential pitfalls of low‐precisionarithmetic, such as reduced dynamic range and quantization errors.

Figure 4.13 Overview of quantization‐aware training (QAT).

Figure 4.14 Overview of post‐training quantization (PTQ).Courbariaux et al. [25] proposed a binary neural network to quantify the weights. Morespecifically, it restricts the value of the network weight by setting it to the value or 1,and it simplifies the design of hardware that is dedicated to deep learning. Gong etal. [33] employed the ‐means clustering algorithm to quantize the weights of fully

connected layers, which could achieve up to 24 times the compression of the networkwith only a 1% loss of classification accuracy for the CNN network in the ImageNetchallenge. Ding et al. [31] introduced an accurate PTQ framework for vision transformers(APQ‐ViT) that includes a unified block‐wise calibration scheme to optimize quantizationby addressing crucial errors on a block‐by‐block basis. Additionally, they introducedMatthew‐Effect Preserving Quantization for the softmax function. Q‐ViT [62] is one of thepioneers to introduce the QAT in the ViT. Q‐ViT introduces an information rectificationmodule (IRM) and a distribution guided distillation (DGD) scheme to reduce informationdistortion in the quantized self‐attention map using low‐bit quantization. Additionally,researchers have been more interested in applying mixed‐precision quantization thansingle‐precision in the full model. The idea behind this is to ensure higher precision in thesensitive layers (e.g., 16‐bit or 8‐bit) and lower precision in the less sensitive layers (e.g.,4‐bit). For example, Tang et al. [102] proposed a novel method for mixed‐precisionquantization that utilized learnable scale factors as importance indicators to determineoptimal bit‐widths for each layer efficiently, significantly reducing search time andimproving accuracy.Lastly, quantization has not only been used in imaging; quantization is getting popular incompressing large language models (LLMs). The number of parameters of an LLM modelis currently in billions and is expected to grow to trillions in the future. As a result,compressing the model is required to deploy LLMs in edge devices. Most of the LLMscurrently use the PTQ technique as QAT can not scale up easily [65] in LLMs. Q‐BERT [98] is the first work to apply quantization to the Bidirectional EncoderRepresentations from Transformers (BERT) model. They introduced a group‐wisequantization and used a Hessian‐based mix‐precision technique to compress the model.One of the recent works by Xiao et al. [111] proposed a PTQ named Smoothquant forLLMs enabling 8‐bit weight and 8‐bit activations where they smooth the activationoutliers, particularly focusing on mitigating the impact of outliers in activations andweights with a mathematically equivalent transformation. Extended to the Smoothquantwork from the same MIT Han lab proposed AWQ [65] which minimizes the quantizationerror by preserving 1% of the salient weights. They use the activation distribution toidentify the salient weight channels. This quantization technique is deployed on differentedge devices, including Jetson Orin and Rasberry Pi4, and has also been experimentedwith on TinyChat.
4.3.1.3 Low‐Rank Approximation
Low‐rank approximation refers to reconstructing the dense matrix to estimate therepresentative parameters. If we consider the weight matrix of the original network as afull‐rank matrix, we can use various low‐rank approximation methods to decompose alarge matrix multiplication into a series of multiplications between smaller matrices. Thisreduces the overall computation and accelerates the model's execution. First, let'sunderstand what low rank and matrix rank mean. The rank of a matrix measures thelinear independence of its rows and columns. A matrix is a full rank if all its rows andcolumns are linearly independent. The rank is determined by the number of nonzero rowsor columns. In essence, the rank quantifies the matrix's inherent correlation. Consider anorchestra rehearsing a complex symphony. If each musician focuses on their own sheetmusic and their performances are well‐coordinated, the entire piece will be harmonious,akin to a full‐rank matrix where each part is linearly independent, with no redundancy.However, if some musicians ignore the conductor or disrupt the rhythm—for instance, if aviolinist plays a different melody and others follow—then the orchestra's performancebecomes chaotic. At this point, the orchestra resembles a low‐rank matrix because partsof the performance are linearly dependent, losing their independence. This exampleillustrates that when all parts are independent and coordinated, the system (or matrix)has a high rank, is orderly, and problems are easily solved. Conversely, when parts

influence each other and lose independence, the system's (or matrix's) rank decreases,leading to disorder and making problems harder to solve. In mathematics, the rank of amatrix is defined as the maximum number of linearly independent vectors within it, whichcan be understood as the degree of order. Since the rank measures correlation, thecorrelation within a matrix represents its structural information. If the rows of a matrixare highly correlated, the matrix can be projected into a lower‐dimensional linearsubspace, meaning it can be represented by a few vectors and is, therefore, low‐rank. Insummary, if a matrix represents structural information, such as images or user‐itemrecommendation tables, it generally has a certain degree of correlation between its rows,making it typically low‐rank. Regarding the low‐rank estimation compression technique,some recent work was conducted. For example, Denton et al. [30] use singular valuedecomposition to reconstruct the weight of all connected layers. They triple the speedupsof convolutional layers on both CPU and GPU, and the loss of precision is controlledwithin 1%. Denil et al. [28] employ low‐rank approximation to compress the weights ofdifferent layers and reduce the number of dynamic parameters. Sainath et al. [96] uses alow‐rank matrix factorization on the final weight layer of a DNN for acoustic modeling.
4.3.1.4 Knowledge Distillation
Knowledge distillation is also called teacher‐student training. The idea of knowledgedistillation is to adopt a teacher–student strategy and use a pretrained network to train acompact network for the same task [97]. It was first proposed by Caruana andcoworkers [14]. They used a compressed network of trained network models to marksome unlabeled simulation data and reproduced the output of the original larger network.Figure 4.15 provides a visual summary of the knowledge distillation process within aneural network. It shows how knowledge is transferred from a Teacher Model to aStudent Model. Knowledge distillation is primarily a technique used to transferknowledge from one neural network to another, which can be either homogeneous orheterogeneous. The process begins by training a teacher network, which is then keptfixed during the distillation process. The output from this pretrained teacher network,along with the actual labels of the data, is used to train a student network. This two‐steptraining process enables the student model to effectively learn the rich knowledge fromthe teacher model while also being refined using the ground truth labels. In constructingthe loss function for knowledge distillation, one component is the Distill Loss, which iscalculated as the cross‐entropy between the soft targets from the teacher network andthe softmax outputs of the student network. The other component is Student Loss, whichis the cross‐entropy between the ground truth labels and the softmax outputs of thestudent network. Knowledge distillation can be employed to compress a large networkinto a smaller one while retaining performance close to that of the larger network.Additionally, it can consolidate the knowledge learned by multiple networks into a singlenetwork, thereby achieving performance levels comparable to an ensemble of models.The work in [12] trained a parametric student model to estimate a Monte Carlo teachermodel. Luo et al. [73] use the neurons in the hidden layer to generate more compactmodels and preserve as much of the label information as possible. Based on the idea offunction‐preserving transformations, the work in [20] instantaneously transfers theknowledge from a teacher network to each new, deeper, or wider network. However,using a shared hyperparameter between student and teacher requires a precise match inrange and variance, which limits the performance of the student models due to theteacher's inherent logit patterns, which are already enough for effective learning. Toovercome the limitations of shared hyperparameter in distillation, Sun et al. [101]introduced a hyperparameter based on the weighted standard deviation of logits andapplying a ‐score standardization before softmax and Kullback–Leibler divergence. Thisapproach allows the student to focus on key logit relationships rather than matchingmagnitudes, addressing issues where the traditional hyperparameter sharing fails.

Figure 4.15 Overview of knowledge distillation.Although knowledge distillation has been widely adopted, especially before deployingmodels, it has shown exceptional performance as a model compression technique forclassification problems. Recently, LLMs have also garnered significant attention. Forexample, the lightweight versions of BERT, made possible through knowledge distillation,have enabled its use on edge devices. However, as larger models with more parametersemerge, there is a pressing need to explore new knowledge distillation techniques anddevelop innovative algorithms to effectively leverage these advanced models.
4.3.1.5 Combined Compression TechniquesEvery compression technique has pros and cons or is sometimes unsuitable for thespecific tasks to be performed in the hardware. As a result, researchers mixed differentcompression techniques and achieved better outcomes than the baseline results. Han etal. [38] coalesced pruning with quantization for model reduction and Huffman coding toreduce the storage requirement. Aghli and Ribeiro [1] combined weight pruning andknowledge distillation to compress the CNN models and solved the dimensiondependencies of complex models like ResNets. They initially apply weight pruningselectively to specific layers within the CNN model to maintain the integrity of thenetwork's structure. Following this, they implement knowledge distillation along with acustomized loss function to further compress the layers that were not pruned, enhancingoverall model efficiency. On the other hand, ViT also unified multiple compressiontechniques to achieve better accuracy with lower latency in edge devices. Yu et al. [113]addressed the high computational demands of ViTs by proposing a unified compressionframework that combines layer‐wise pruning, layer skipping, and knowledge distillation.Unlike existing approaches focusing on only one or two aspects of compression, thisframework integrates all three techniques into an end‐to‐end, budget‐constrainedoptimization process. The method jointly learns model weights, pruning ratios, and skipconfigurations under a distillation loss and is solved using the primal‐dual algorithm. Theexperiment on ViT in ImageNet datasets can shrink to 50% of the original flops.Knowledge distillation is mostly common when combining compression techniquesbecause it provides a form of regularization that makes the student model more robust tothe structural changes introduced by pruning or quantization. However, Qualcomm AIresearch [59] introduced Bayesian Bits for combining mixed‐precision quantization andpruning. They use learnable stochastic gates to control bit widths, promoting low‐bitsolutions. As compression techniques continue to evolve, integrating methods likepruning, quantization, and knowledge distillation into unified frameworks represents a

significant leap forward. These unified compression techniques not only push theboundaries of model efficiency but also ensure that deep learning models remainpractical for real‐world applications on edge devices.
4.3.2 Hardware‐Software Codesign for Edge OptimizationHardware‐software codesign is a collaborative approach to system design in whichsoftware and hardware components are developed simultaneously. It maximizes edgedevices' performance, efficiency, and scalability, balancing computational demand withavailable hardware resources. Figure 4.16 illustrates a hardware‐software codesign'sgeneral workflow and components for efficiently deploying AI models into edge devices.

Figure 4.16 Overview of hardware‐software codesign.Tuli et al. [105] proposed a codesign framework named CODEBench for CNNs and theircorresponding hardware accelerators. They addressed the limitation of search space andsuboptimal exploration techniques. CODEBench consists of CNNBench (optimize CNNusing a Bayesian second‐order gradient search technique) and AccelBench (cycle‐accurate simulations of hardware accelerator). CODEBench achieved higher top‐1accuracy, lower latency, and lower energy consumption on both ImageNet and Cifardatasets compared to the state‐of‐the‐art pair on FPGA and Nvidla. Hardware‐softwarecodesign is explored and thriving in the CNN‐based model and has also been successfullyproposed for transformer‐based models. For example, Zhou et al. [118] proposed anarchitecture named TransPIM that exemplifies software‐hardware codesign byintegrating processing‐in‐memory (PIM) techniques with transformer models. On thesoftware level, it adopts a token‐based dataflow to avoid inter‐layer data flows;correspondingly, TransPIM incorporates lightweight modifications to the conventionalhigh bandwidth memory architecture on the hardware level. The overall results achieved more throughput than existing ASIC‐based accelerators.Moreover, Hardware‐software codesign on FPGA needs to map onto the FPGA'sreconfigurable logic fabric, where custom PEs, such as systolic arrays or specializedarithmetic units, are instantiated to accelerate the different tasks such as objectdetection, image classification [2, 10, 108]. Li et al. [64] evaluated each module of theBEVDet (camera‐based) and PointPillars (LiDAR‐based) on FPGA and GPU to giveinsights about the necessity of the hardware‐software codesign in the multimodal models.One of the recent works by Anupreetham et al. [10] proposed an end‐to‐end pipelinedFPGA‐based hardware‐software codesign object detection system with improvementin throughput. Wang et al. [108] explored the YOLOv2 model for CPU+FPGA platformsintroducing a sparse convolution algorithm and FPGA accelerator architecture based onasynchronously executed parallel convolution cores. Although hardware‐software on

FPGA is evolving, it must be explored for real‐time applications and resource‐demandedmodels like transformers.Additionally, Hardware‐software codesign can be explored for multimodal multitasklearning in autonomous systems. For instance, Hao and Chen [42] have comprehensivestudies about the challenges, opportunities, and possible solutions in the future in theautonomous systems field.
4.3.3 Applying Deep Learning Models on Resource‐Constrained EdgesFirst, let's explore what resource‐constrained edge computing devices are. These deviceshave limitations in computational power, memory, storage, energy consumption, andnetwork bandwidth. Typically, they are deployed in edge computing environments toprocess and analyze data generated near the source in real‐time, rather than transmittingit to a remote data center for processing. As computational capabilities advance tosupport deep learning, the new task for edge computing is to perform deep learningtraining and inference directly on these devices. Currently, there is a significant body ofwork focusing on implementing deep learning on edge devices. For example, GoogleInc. [46] presented efficient CNN for mobile vision applications, called MobileNets. Thetwo hyperparameters that Google introduced allow the model builder to choose the right‐sized model for the specific application. It not only focuses on optimizing for latency butalso builds small networks. MobileNets are generated mainly from depthwise separableconvolutions, which were first introduced in the work of [100] and subsequentlyemployed in Inception models [50]. Flattened networks [53] are designed for fastfeedforward execution. They consist of a consecutive sequence of one‐dimensional filtersthat span every direction of three‐dimensional space to achieve comparable performanceas conventional convolutional networks [107]. Another small network is the Xceptionnetwork [24]; Chollet et al. propose the dubbed Xception architecture inspired byInception V3, where Inception modules have been replaced with depthwise separableconvolutions. It shows that the architecture slightly outperforms Inception V3 on theImageNet data set. Subsequently, Iandola et al. [47] developed Squeezenet, a small CNNarchitecture. It achieves AlexNet‐level [56] accuracy with 50 times fewer parameters onthe ImageNet data set (510 times smaller than AlexNet). In 2017, Microsoft ResearchIndia proposed Bonsai [57] and ProtoNN [37]. Then, they developed EMI‐RNN [29] andFastGRNN [58] in 2018. Bonsai [57] refers to a tree‐based algorithm used to efficientlypredict devices in the IoT. More specifically, it is designed for supervised learning taskssuch as regression, ranking, and multiclass classification. ProtoNN [37] is inspired by k‐Nearest Neighbor (KNN) and could be deployed on the edges with limited storage andcomputational power (e.g., an Arduino UNO with 2 kB RAM) to achieve excellentprediction performance. EMI‐RNN [29] requires 72 times less computation than standardLong Short‐Term Memory Networks (LSTM) [44] and improves accuracy by 1%. Applealso developed efficient hybrid models named MobileViT [78] combining the strengths ofboth CNNs and ViTs to develop a lightweight and low latency network for mobile visiontasks. The main idea of MobileVit is to design transformers as convolutions in a way thatthe resultant MobileViT block has convolution‐like properties while simultaneouslyallowing for global processing. MobileViT can successfully deploy on different mobiledevices without extra effort (tested on iPhone 12). With fewer parameters, it performed6.2% more accurately than MobileNetv3 and achieved 74.8% top‐1 accuracy on theImageNet dataset. Although MobileViT achieved high accuracy on mobile devices, it cannot achieve low latency. Thereupon, apple proposed MobileViTv2 [79] and introduced aseparable self‐attention method with linear complexity to solve the bottleneck ofmultiheaded self‐attention in transformers from MobileViT. This MobileViTv2 is the state‐of‐the‐art for several mobile vision tasks, including object classification and detection.

However, due to its unique architecture, additional work such as hardware design,resource allocation, and scheduling is always required when deep learning models needto deploy on FPGA. Hardware acceleration is the most critical design in the workflow tofacilitate the AI deployment of FPGA. Several works have been published that propose ahardware acceleration technique for FPGA. However, most have experimented withimage classification and are still in the primary stage for real‐world scenarios. Forexample, Auto‐ViT‐Acc [63] is one of the first works on ViT, which strategically utilizedmixed precision across transformer blocks to match the computational demands andresource limitations of FPGAs. By allocating different bit‐widths to PEs, the frameworksupported parallel processing of the ViT data flow and achieved 0.47%–1.36% higher Top‐1 accuracy under the same bit‐width. Additionally, ViA [109] proposed a framework toovercome the significant processing power, path dependences, and memory bandwidthcaused by ViT. ViA minimizes arisen path dependence from the model's shortcutmechanism, thereby optimizing the computational flow and securing efficient utilizationof FPGA resources by employing a half‐layer mapping strategy coupled with thoroughthroughput analysis. Furthermore, the architecture features two distinct reuseprocessing engines incorporating internal streams, diverging from traditional FPGAdesigns. The results indicated that it outperformed conventional computing platforms likeNVIDIA's Tesla V100 in terms of energy efficiency, achieving approximately betterperformance. Both works mainly focused on image classification tasks. In conclusion,edge computing has evolved significantly, enabling deep learning models to runefficiently on edge devices.
4.4 Edge Intelligent System Design and OptimizationEdge computing holds significant potential for expanding or even enhancing analyticscapabilities that were previously limited to cloud environments [18]. In the meanwhile,given that intelligence is essential for quickly analyzing large data volumes andextracting insights, there is a growing demand to implement intelligence at the edge.Executing intelligent tasks near the data, rather than sending it to a remote server,enhances task efficiency and lowers the risk of data interception or leakage [72].In this section, we focus on designing and optimizing EI systems, examining how toefficiently run AI models at the edge while addressing key factors such as algorithmperformance, cost, privacy, reliability, and overall efficiency. Specifically, we delve intothe implementation of EI, discussing key aspects such as (1) how to train models at theedge and (2) how to perform model inference at the edge.
4.4.1 Training on EdgeModel training plays a crucial role in setting the parameters of machine learningframeworks (such as neural networks) based on input data [66, 67]. Due to the limitedcomputational capabilities of edge devices, this process has traditionally been performedoff‐device, often by sending data to a central server to free up computational resourcesfor model inference. As a result, training machine learning models directly at edge nodesor servers is still relatively uncommon [70].However, the concept of EI aims to leverage the data generated or collected by edgedevices and train models locally rather than transmitting the data to a central server.This approach effectively addresses privacy and network concerns, providing a moresecure and robust model training process that supports the development of practical AIservices.First, we focus on one of the most critical aspects of AI at the edge: how to train modelsat the network edge. We introduce the basic architecture of edge training, discuss

optimization techniques, and explore federated learning, the most widely used method forthis purpose.
4.4.1.1 Architecture for Model Training on Edge

Centralized Architecture: Centralized architecture [71, 88], commonly referred toas client‐server architecture, involves a system where a group of client edgesrequests and obtains services from a centralized server or cloud. In this model, thecentralized server or cloud awaits service requests from the client edges andresponds via a standardized interface. The client edges do not need to be aware ofthe specific details or configurations of the centralized server or cloud. Thiscomputing approach is particularly efficient when the client edges and thecentralized server or cloud handle distinct, routine services.
Decentralized Architecture: Decentralized architecture [71], also known as peer‐to‐peer (P2P) architecture, offers an alternative approach for communication andcollaboration between edges and clouds. In this model, two edges can communicateand interact directly without involving a third party. Computing tasks are distributedamong the edges, allowing them to both contribute and consume resources within theedge network, eliminating the need for a centralized server.

4.4.1.2 Optimization for TrainingOnce model training at the edge is adopted, it is essential to address the optimizationchallenges of the training process. The goal of optimization is to account for factors suchas data distribution, computational power, and network capacity while ensuring thatdistributed edge deployment is feasible. Since solo training resembles the centralizedarchitecture, our focus is primarily on collaborative training approaches. In this context,training optimization refers to improving the process to meet specific requirements, suchas time efficiency, energy consumption, accuracy, and privacy protection. The mainobjective here is to accelerate the training process on resource‐constrained edge devices,which can be approached in three key areas.
Processing efficiency: It has been observed that the complexity of the trainingmodel significantly impacts time efficiency, especially when the device lackssufficient computing resources [75]. To expedite the process, one approach is toreduce training time by using transfer learning, where learned features aretransferred and cached locally for further training, thereby speeding up the overallprocess. Additionally, edge devices can collaborate and learn from each other, furtherenhancing training efficiency.
Communication efficiency: To achieve communication efficiency, the focus is onreducing both the frequency and cost of communications. In other words, minimizinghow often communication occurs and reducing the size of each communicationexchange are key strategies for lowering communication costs. For instance, theauthors in [68, 69] introduced collaborative training technologies on the edges for theAI‐based prediction model and multitarget multiobject tracking. Besides thefrequency of training updates, the size of these updates also impacts bandwidthusage. Gradient compression techniques, such as gradient quantization and gradientsparsification [15], can be employed to reduce the size of updates, thereby enhancingcommunication efficiency.

4.4.1.3 Collaborative TrainingWith the increasing computational and memory capabilities of edge devices, it raises thequestion of whether relying on the cloud for data processing is always necessary and

whether innovative approaches can be implemented on the edge to address big datachallenges. In response to these considerations, Lu et al. [68] propose a collaborativelearning framework at the edge, called CLONE, which primarily demonstrates itseffectiveness in reducing latency and preserving privacy (Figure 4.17).

Figure 4.17 The framework of CLONE. The CLONE framework operates by allowingeach edge node to locally train or run a neural network model using its own private data,while simultaneously sending its parameters to a central Parameter EdgeServer duringthe training or inference phase. The Parameter EdgeServer then performs necessaryoperations, such as aggregating the uploaded parameters, before transmitting theupdated parameters back to the edge nodes. Source: Adapted from Lu et al. [68].
4.4.2 Model Inference on EdgeEdge inference is a key aspect of EI. As modern neural networks grow larger, deeper, andmore complex, they demand increasingly substantial computing resources. This makes itchallenging to run high‐performance models directly on edge devices, such as mobilephones, IoT terminals, and embedded systems, which have limited computational power.Nevertheless, edge inference, as an essential part of EI, must be executed at the edge,where its overall performance (e.g., execution time, accuracy, and energy efficiency) canbe significantly constrained by the device's capabilities. Here, we explore variousframeworks and approaches aimed at bridging the gap between task requirements anddevice limitations.
4.4.2.1 Model DesignRecent studies have concentrated on developing lightweight neural network models thatcan be efficiently executed on edge devices with fewer hardware requirements. Based onthe model design strategies, the existing literature can be grouped into two categories:architecture search and human‐designed architecture. The former involves machinesautonomously determining the optimal architecture, while the latter relies on humanexpertise to craft the architecture.

Human‐designed architectures: While architecture search has shown significantpotential for model design, it continues to face challenges related to hardwarerequirements. As a result, researchers are increasingly focusing on human‐designedstrategies. For instance, they have developed lightweight deep neural networks, suchas MobileNets [55], specifically for mobile and embedded devices by utilizing depth‐wise separable convolutions. Another approach to reducing computational costs is theuse of group convolutions, which has been employed to create foundationalarchitectures like Xception [24].
Automotic architecture search: Human‐designed architectures are often time‐consuming and require significant expertise. As a more efficient alternative, using AIto search for existing architectures and identify the optimal one for edgeenvironments has gained traction. Automated search architectures like NASNet [120]and AmoebaNet [93] have demonstrated competitive, and sometimes superior,performance in tasks such as classification and recognition. However, despite thepromising results of architecture search in model design, its popularity is still limitedby the substantial hardware requirements it demands.

4.4.2.2 Efficient AIDespite the widespread application and high performance of DNNs, their computationalcomplexity remains a significant limitation, particularly for resource‐constrained edgedevices. High power consumption and latency can hinder system performance or evenlead to crashes, as most edge devices are not built for compute‐intensive tasks. Severalapproaches have been developed to address this issue. One approach is the design ofspecialized chips for deep learning, which accelerates tasks using dedicated hardware.Another solution is software‐based, which involves evaluating whether all computationswithin the model are necessary. If not, the model can be simplified, reducing both thecomputational load and storage requirements.Like other machine learning methods, DNNs consist of two phases: training andinference. During training, the model learns its parameters based on the training dataset,while in inference, the model uses test data to produce final results.Overparameterization refers to a scenario where numerous parameters are requiredduring training to capture model fluctuations, but fewer are needed during inference.This allows the model to be simplified after training before being deployed at the edge forinference. Simplifying the model offers several advantages, including: (1) Reducedcomputation, leading to lower power consumption and shorter computation time. (2) Asmaller memory footprint, allowing deployment on lower‐end devices. More compactpackages for application updates and releases. (3) This software‐based technique iscalled model compression. It has a low implementation cost and is complementary tohardware acceleration, with the two methods potentially benefiting from each other.Model compression methods can be classified into four main categories: network pruning,quantization, knowledge distillation, and low‐rank factorization.

Figure 4.18 An overview of the TensorRT‐enabled framework, which integrates popularobject detection models from frameworks such as PyTorch, TensorFlow, and ONNX,along with NVIDIA GPUs, into TensorRT precision modes to optimize AI inferenceperformance. Source: Jafarpourmarzouni et al. [52]/IEEE.
4.4.2.3 Optimization ToolRecently, researchers have turned their attention to TensorRT as a means to acceleratemodel inference while maintaining performance on resource‐constrained edge devices(Figure 4.18). Sumaiya et al. [52] performed a comparative analysis of four differentworkflows using popular object detection models on TensorRT for Full Precision (FP32),Half Precision (FP16), and Integer Precision (INT8). Their findings highlight theinference performance and accuracy associated with each workflow. This chapterprovides a comprehensive guide for selecting the most suitable workflow based onspecific needs for inference performance and accuracy, offering valuable insights foradvancements in edge devices (e.g., software‐defined vehicles) and other real‐timesystems.
4.4.2.4 Collaborative InferenceRecently, researchers have also proposed collaborative inference frameworks for diverseedge computing applications. For example, as shown in Figure 4.19, Lu et al. [69]proposed a collaborative inference framework for multitarget multicamera tracking.

Figure 4.19 A depiction of the collaborative inference pipeline for the multitargetmulticamera tracking. Source: Lu et al. [69]/IEEE.To be concrete, as shown in Figure 4.19, multiple video streams from different cameras(labeled Camera 1, Camera 2, and so on) are captured. This is the initial input whereeach camera provides its own set of video data. The video streams are passed through atarget detection algorithm, such as YOLOv3 in this case, which identifies and outlinesmultiple targets (e.g., people) within the scene. Detected targets are represented bybounding boxes on the images. After target detection, features are extracted using wideresidual networks to create an appearance descriptor (AD), which captures how thetarget looks (appearance features). Kalman filtering is applied to estimate and predict thetarget's motion over time, generating a motion descriptor (MD), which focuses on themovement of the target.The detected and predicted appearance and MDs are then used to associate the detectedtargets with their identities across multiple frames and cameras. This data association isdone using two main distance metrics: (1) Cosine distance: it is used to match the ADsacross frames. (2) Mahalanobis distance: it is Used to match the MDs based on theirpredicted movement trajectories. Finally, the targets are tracked across multiplecameras, with the corresponding bounding boxes highlighted on the camera feeds. Thisprocess allows the system to consistently track multiple individuals as they move acrossdifferent camera views.
4.5 Summary and Practice
4.5.1 SummaryThe rapid evolution of AI and edge computing has given rise to EI, a groundbreakingsolution to the challenges posed by the enormous data volumes generated in ourinterconnected world. By shifting data processing to the network's edge, this innovativeapproach significantly reduces bandwidth consumption and associated costs whilemaintaining high‐quality services, offering a compelling alternative to traditional cloud‐based processing. In this chapter, we've defined EI as the ability of edge devices toexecute AI algorithms locally. This capability extends to processing a wide array of datatypes, including video streams, natural language, time‐series information, andunstructured sensor data, without the need for cloud uploads. To enable EI, a diverseecosystem of technologies has emerged. On the hardware front, specialized componentssuch as ASICs, FPGAs, and GPUs have been developed to accelerate AI tasks whileminimizing power consumption. Complementing these advancements, softwareframeworks like TensorFlow Lite, CoreML, XNNPACK, and QNNPACK have beenoptimized for edge environments, facilitating efficient AI inference on devices withlimited resources. We've also explored the critical role of collaboration between cloud

and edge systems, as well as edge‐to‐edge interactions. These collaborative approachesare essential for distributed deep learning and real‐time processing, enabling models tobe trained in the cloud and deployed efficiently at the edge, with the added benefit oflocal fine‐tuning based on edge‐generated data. Various compression techniques play apivotal role in adapting complex AI models for edge deployment. Methods such asparameter sharing, pruning, quantization, and low‐rank approximation effectively reducemodel size and computational demands, making it feasible to run sophisticated AI modelson resource‐constrained edge devices. Furthermore, we've highlighted knowledgedistillation as a powerful technique for transferring insights from large, pretrainedmodels to smaller, more efficient versions suitable for edge deployment. This processensures that the streamlined models maintain high accuracy while optimizing for lowlatency, energy efficiency, and minimal memory usage. Moreover, we highlighted theunified compression techniques in both CNN and ViT models to discuss the future scopeof the model compression techniques. Subsequently, hardware‐software codesign is alsocrucial in optimizing performance and balancing computational demands with hardwarecapabilities in devices like FPGAs. Recent works have demonstrated significantimprovements in throughput and efficiency through this codesign approach, such as inYOLOv2 implementations on CPU+FPGA platforms. Accelerating. Moreover, from earlymodels like MobileNets and SqueezeNet to more recent hybrid models like MobileViT andMobileViTv2, the emphasis has shifted toward directly balancing accuracy, latency, andefficiency to meet the demands of real‐time applications without any additional huddle.On the other hand, as the need for deploying those complex models on specializedhardware like FPGAs grows, hardware‐accelerating techniques such as Auto‐ViT‐Acc andViA are emerging to tackle the unique challenges posed by ViTs. Both software andhardware design architecture developments are needed to expedite the AI deployment onedge devices. In essence, EI represents the convergence of AI and edge computing,providing a robust framework for deploying advanced AI capabilities directly at thenetwork edge. By leveraging cutting‐edge hardware, optimized software, collaborativeprocessing, and model compression techniques, EI promises to revolutionize AIapplications across diverse domains, from smart home systems to autonomous vehicles,enhancing both performance and efficiency.
4.5.2 Practice Questions

1. How does edge computing hardware differ from traditional data center hardware?2. Discuss the advantages and challenges of implementing machine learning at theedge.3. What are the key considerations in choosing an edge application developmentframework?4. How does integrating hardware accelerators impact the design of machine learningmodels for edge deployment?5. Discuss the role of software‐hardware codesign in optimizing resource‐constrainededge computing environments.
4.5.3 Course Projects

1. Develop a simple edge computing application using a containerization platform.2. Prune a classical neural network model to reduce both model size and latency.Understand the basic concept of pruning, implement and apply a few pruningapproaches, get a basic understanding of performance improvement (such asspeedup) from pruning, and understand the differences and tradeoffs between thesepruning approaches.

3. Quantize a classical neural network model to reduce both model size and latency.Understand the basic concept of quantization, implement and apply a fewquantization approaches, get a basic understanding of performance improvement(such as speedup) from quantization, and understand the differences and tradeoffsbetween these quantization approaches.4. Use knowledge distillation to compress a classical neural network model to reduceboth model size and latency. Understand the basic concept of knowledge distillationand get a basic understanding of performance improvement (such as speedup) fromknowledge distillation.5. Using model compression techniques, optimizing large language models (LLMs) onedge devices (e.g., your laptop). A good example can be found at Github:https://github.com/mit-han-lab/tinychat-tutorial?tab=readme-ov-file.

https://github.com/mit-han-lab/tinychat-tutorial?tab=readme-ov-file

Chapter 4 Suggested Papers
 1 Jude Haris et al. “SECDA: Efficient hardware/software co‐design of FPGA‐based DNNaccelerators for edge inference”. In: 2021 IEEE 33rd International Symposium on

Computer Architecture and High Performance Computing (SBAC‐PAD). IEEE. 2021, pp.33–43. 2 Jakub Konečný et al. “Federated learning: Strategies for improving communicationefficiency”. In: arXiv preprint arXiv:1610.05492 (2016). 3 Xingzhou Zhang et al. “OpenEI: An open framework for edge intelligence”. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE.2019, pp. 1840–1851. 4 Zhi Zhou et al. “Edge intelligence: Paving the last mile of artificial intelligence withedge computing”. In: Proceedings of the IEEE 107. 8 (2019), pp. 1738–1762.

References 1 Nima Aghli and Eraldo Ribeiro. “Combining weight pruning and knowledge distillationfor CNN compression”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 3191–3198. 2 Afzal Ahmad, Muhammad Adeel Pasha, and Ghulam Jilani Raza. “Accelerating tinyYOLOv3 using FPGA‐based hardware/software co‐design”. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE. 2020, pp. 1–5. 3 Amazon Web Services. AWS Snowball. https://aws.amazon.com/cn/snowball/.Accessed: 2024‐07‐09. 2024. 4 Amazon Web Services. AWS Snowcone. https://aws.amazon.com/cn/snowcone/.Accessed: 2024‐07‐09. 2024. 5 Amazon Web Services. AWS IoT Greengrass. https://aws.amazon.com/greengrass/.Accessed: 2024‐07‐10. 2024. 6 Amazon Web Services, Inc. Amazon SageMaker Neo: Train Once, Run Anywhere.https://aws.amazon.com/sagemaker/neo/. Accessed: 2024‐08‐21. 2024. 7 Amazon Web Services, Inc. Amazon SageMaker Edge.https://aws.amazon.com/sagemaker/edge/. Accessed: 2024‐08‐20. 2024. 8 Amazon Web Services, Inc. AWS RoboMaker. https://aws.amazon.com/cn/robomaker/.Accessed: 2024‐01‐20. 2024. 9 AMD Xilinx. Vitis AI. https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.2024. (Visited on 08/20/2024).

10 Anupreetham Anupreetham et al. “High throughput FPGA‐based object detection viaalgorithm‐hardware co‐design”. In: ACM Transactions on Reconfigurable Technology
and Systems 17. 1 (2024), pp. 1–20.

11 Apple Inc. Core ML Documentation.https://developer.apple.com/documentation/coreml. Accessed: 2024‐05‐20. 2024.

https://aws.amazon.com/cn/snowball/
https://aws.amazon.com/cn/snowcone/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/cn/robomaker/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://developer.apple.com/documentation/coreml

12 Anoop Korattikara Balan et al. “Bayesian dark knowledge”. In: Advances in Neural
Information Processing Systems 28 (2015).

13 Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. “Are FPGAs suitable for edgecomputing?” In: USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18).2018.
14 Cristian Buciluă, Rich Caruana, and Alexandru Niculescu‐Mizil. “Model compression”.In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2006, pp. 535–541.
15 Yi Cai et al. “Long live time: Improving lifetime for training‐in‐memory engines bystructured gradient sparsification”. In: Proceedings of the 55th Annual Design

Automation Conference. 2018, pp. 1–6.
16 Canonical Ltd. LXD ‐ The system container manager. https://canonical.com/lxd.Accessed: 2024‐08‐14. 2024.
17 Jie Cao et al. “EdgeOS̲H: A home operating system for internet of everything”. In:

2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).IEEE. 2017, pp. 1756–1764.
18 Junzhou Chen and Sidi Lu. “An advanced driving agent with the multimodal largelanguage model for autonomous vehicles”. In: 2024 IEEE International Conference on

Mobility, Operations, Services and Technologies (MOST). IEEE. 2024, pp. 1–11.
19 Shi Chen and Qi Zhao. “Shallowing deep networks: Layer‐wise pruning based onfeature representations”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 41. 12 (2018), pp. 3048–3056.
20 Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. “Net2net: Accelerating learningvia knowledge transfer”. In: arXiv preprint arXiv:1511.05641 (2015).
21 Tianqi Chen et al. “MxNet: A flexible and efficient machine learning library forheterogeneous distributed systems”. In: arXiv preprint arXiv:1512.01274 (2015).
22 Wenlin Chen et al. “Compressing neural networks with the hashing trick”. In:

International Conference on Machine Learning. PMLR. 2015, pp. 2285–2294.
23 Yu Cheng et al. “A survey of model compression and acceleration for deep neuralnetworks”. In: arXiv preprint arXiv:1710.09282 (2017).
24 Francois Chollet. “Xception: Deep learning with depthwise separable convolutions”.In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017, pp. 1251–1258.
25 Matthieu Courbariaux, Yoshua Bengio, and Jean‐Pierre David. “BinaryConnect:Training deep neural networks with binary weights during propagations”. In: Advances

in Neural Information Processing Systems 28 (2015).
26 Mike Davies et al. “Loihi: A neuromorphic manycore processor with on‐chip learning”.In: IEEE Micro 38. 1 (2018), pp. 82–99.
27 DDS. DDS Foundation. https://www.dds-foundation.org/. Accessed: 2024‐01‐10. 2024.
28 Misha Denil et al. “Predicting parameters in deep learning”. In: Advances in Neural

Information Processing Systems 26 (2013).

https://canonical.com/lxd
https://www.dds-foundation.org/

29 Don Dennis et al. “Multiple instance learning for efficient sequential dataclassification on resource‐constrained devices”. In: Advances in Neural Information
Processing Systems 31 (2018).

30 Emily L Denton et al. “Exploiting linear structure within convolutional networks forefficient evaluation”. In: Advances in Neural Information Processing Systems 27(2014).
31 Yifu Ding et al. “Towards accurate post‐training quantization for vision transformer”.In: Proceedings of the 30th ACM International Conference on Multimedia. 2022, pp.5380–5388.
32 Zidong Du et al. “ShiDianNao: Shifting vision processing closer to the sensor”. In:

Proceedings of the 42nd Annual International Symposium on Computer Architecture.2015, pp. 92–104.
33 Yunchao Gong et al. “Compressing deep convolutional networks using vectorquantization”. In: arXiv preprint arXiv:1412.6115 (2014).
34 Google. XNNPACK. https://github.com/google/XNNPACK. GitHub repository. 2024.(Visited on 08/20/2024).
35 Google Cloud. Edge TPU. https://cloud.google.com/edge-tpu. Accessed: 2024‐07‐09.2024.
36 Google Cloud. Google Kubernetes Engine. https://cloud.google.com/kubernetes-%3Cp%3Eengine?%3Cp%3Ehl%3Cp%3E=en. Accessed: 2024‐08‐14. 2024.
37 Chirag Gupta et al. “ProtoNN: Compressed and accurate KNN for resource‐scarcedevices”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1331–1340.
38 Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deepneural networks with pruning, trained quantization and Huffman coding”. In: arXiv

preprint arXiv:1510.00149 (2015).
39 Song Han et al. “Learning both weights and connections for efficient neural network”.In: Advances in Neural Information Processing Systems 28 (2015).
40 Song Han et al. “EIE: Efficient inference engine on compressed deep neural network”.In: ACM SIGARCH Computer Architecture News 44. 3 (2016), pp. 243–254.
41 Song Han et al. “ESE: Efficient speech recognition engine with sparse LSTM onFPGA”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field‐

Programmable Gate Arrays. 2017, pp. 75–84.
42 Cong Hao and Deming Chen. “Software/hardware co‐design for multi‐modal multi‐task learning in autonomous systems”. In: 2021 IEEE 3rd International Conference on

Artificial Intelligence Circuits and Systems (AICAS). IEEE. 2021, pp. 1–5.
43 Jason Hill et al. “System architecture directions for networked sensors”. In: ACM

SIGPLAN Notices 35. 11 (2000), pp. 93–104.
44 Sepp Hochreiter and Jürgen Schmidhuber. “Long short‐term memory”. In: Neural

Computation 9. 8 (1997), pp. 1735–1780.
45 Zejiang Hou and Sun‐Yuan Kung. “Multi‐dimensional model compression of visiontransformer”. In: 2022 IEEE International Conference on Multimedia and Expo (ICME).

https://github.com/google/XNNPACK
https://cloud.google.com/edge-tpu
https://cloud.google.com/kubernetes-%3Cp%3Eengine?%3Cp%3Ehl%3Cp%3E=en

2022, pp. 01–06. DOI: 10.1109/ICME52920. 2022.9859786.
46 Andrew G Howard et al. “MobileNets: Efficient convolutional neural networks formobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).
47 Forrest N Iandola et al. “SqueezeNet: AlexNet‐level accuracy with 50x fewerparameters and 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).
48 Intel. OpenVINO Toolkit Overview.https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html. Accessed: 2024‐07‐10. 2024.
49 International Electrotechnical Commission. Edge Intelligence.https://www.iec.ch/basecamp/edge-intelligence. Accessed: 2024‐05‐27. 2024.
50 Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep networktraining by reducing internal covariate shift”. In: International Conference on Machine

Learning. PMLR. 2015, pp. 448–456.
51 iRobot Corporation. iRobot: Robot Vacuums and Mops. https://www.irobot.com/.Accessed: 2024‐01‐20. 2024.
52 Sumaiya et al. “Enhancing real‐time inference performance for time‐critical software‐defined vehicles”. In: 2024 IEEE International Conference on Mobility, Operations,

Services and Technologies (MOST). IEEE. 2024, pp. 101–113.
53 Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. “Flattened convolutionalneural networks for feedforward acceleration”. In: arXiv preprint arXiv:1412.5474(2014).
54 Norman P Jouppi et al. “In‐datacenter performance analysis of a tensor processingunit”. In: Proceedings of the 44th Annual International Symposium on Computer

Architecture. 2017, pp. 1–12.
55 Whui Kim, Woo‐Sung Jung, and Hyun Kyun Choi. “Lightweight driver monitoringsystem based on multi‐task mobilenets”. In: Sensors 19. 14 (2019), p. 3200.
56 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification withdeep convolutional neural networks”. In: Advances in Neural Information Processing

Systems 25 (2012).
57 Ashish Kumar, Saurabh Goyal, and Manik Varma. “Resource‐efficient machinelearning in 2 KB RAM for the Internet of Things”. In: International Conference on

Machine Learning. PMLR. 2017, pp. 1935–1944.
58 Aditya Kusupati et al. “FastGRNN: A fast, accurate, stable and tiny kilobyte sizedgated recurrent neural network”. In: Advances in Neural Information Processing

Systems 31 (2018).
59 Andrey Kuzmin et al. “Pruning vs quantization: Which is better?” In: Advances in

Neural Information Processing Systems 36 (2024).
60 Philip Levis et al. “TinyOS: An operating system for sensor networks”. In: Ambient

Intelligence (2005), pp. 115–148.
61 Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint

arXiv:1608.08710 (2016).

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.iec.ch/basecamp/edge-intelligence
https://www.irobot.com/

62 Yanjing Li et al. “Q‐ViT: Accurate and fully quantized low‐bit vision transformer”. In:
Advances in Neural Information Processing Systems 35 (2022), pp. 34451–34463.

63 Zhengang Li et al. “Auto‐ViT‐Acc: An FPGA‐aware automatic acceleration frameworkfor vision transformer with mixed‐scheme quantization”. In: 2022 32nd International
Conference on Field‐Programmable Logic and Applications (FPL). IEEE. 2022, pp. 109–116.

64 Yunge Li, Shaibal Saha, and Lanyu Xu. “The architectural implications of multi‐modaldetection models for autonomous driving systems”. In: 2024 IEEE International
Conference on Mobility, Operations, Services and Technologies (MOST). 2024, pp. 218–228. DOI: 10.1109/MOST60774.2024.00030.

65 Ji Lin et al. “AWQ: Activation‐aware weight quantization for on‐device LLMcompression and acceleration”. In: Proceedings of Machine Learning and Systems 6(2024), pp. 87–100.
66 Sidi Lu and Weisong Shi. “The emergence of vehicle computing”. In: IEEE Internet

Computing 25. 3 (2021), pp. 18–22.
67 Sidi Lu and Weisong Shi. “Vehicle computing: Vision and challenges”. In: Journal of

Information and Intelligence 1. 1 (2023), pp. 23–35.
68 Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborative learning on the edges: A casestudy on connected vehicles”. In: 2nd USENIX Workshop on Hot Topics in Edge

Computing (HotEdge 19). 2019.
69 Sidi Lu, Yongtao Yao, and Weisong Shi. “CLONE: Collaborative learning on theedges”. In: IEEE Internet of Things Journal 8. 13 (2020), pp. 10222–10236.
70 Sidi Lu et al. “SafeCampus: Multimodal‐based campus‐wide pandemic forecasting”. In:

IEEE Internet Computing 26. 1 (2021), pp. 60–67.
71 Sidi Lu et al. “A comparison of end‐to‐end architectures for connected vehicles”. In:

2022 5th International Conference on Connected and Autonomous Driving
(MetroCAD). IEEE. 2022, pp. 72–80.

72 Sidi Lu et al. “EdgeWare: Toward extensible and flexible middleware for connectedvehicle services”. In: CCF Transactions on High Performance Computing 4. 3 (2022),pp. 339–356.
73 Ping Luo et al. “Face model compression by distilling knowledge from neurons”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016.
74 Jian‐Hao Luo, Jianxin Wu, and Weiyao Lin. “ThiNet: A filter level pruning method fordeep neural network compression”. In: Proceedings of the IEEE International

Conference on Computer Vision. 2017, pp. 5058–5066.
75 Yichen Luo et al. “Impact of raindrops on camera‐based detection in software‐definedvehicles”. In: 2024 IEEE International Conference on Mobility, Operations, Services

and Technologies (MOST). IEEE. 2024, pp. 193–205.
76 Steven Macenski et al. “Robot operating system 2: Design, architecture, and uses inthe wild”. In: Science Robotics 7. 66 (2022), eabm6074.
77 Dukhan Marat, W Yiming, and L Hao. QNNPACK: Open source library for optimized

mobile deep learning. 2018.

78 Sachin Mehta and Mohammad Rastegari. “MobileViT: Light‐weight, general‐purpose,and mobile‐friendly vision transformer”. In: arXiv preprint arXiv:2110.02178 (2021).
79 Sachin Mehta and Mohammad Rastegari. “Separable self‐attention for mobile visiontransformers”. In: arXiv preprint arXiv:2206.02680 (2022).
80 Dirk Merkel. “Docker: Lightweight linux containers for consistent development anddeployment”. In: Linux Journal 2014. 239 (2014), p. 2.
81 Microsoft. Azure IoT Edge. https://azure.microsoft.com/en-us/products/iot-edge.Accessed: 2024‐07‐10. 2024.
82 Microsoft Azure. Azure Sphere. https://azure.microsoft.com/en-us/products/azure-sphere. Accessed: 2024‐07‐09. 2024.
83 Dharmendra S Modha. “Introducing a brain‐inspired computer”. In: Published onlineat http://www.research.ibm.com/articles/brain-chip.shtml (2017).
84 Pavlo Molchanov et al. “Importance estimation for neural network pruning”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019, pp. 11264–11272.
85 NVIDIA Corporation. NVIDIA Jetson Orin. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/. Accessed: 2024‐05‐20. 2024.
86 NVIDIA Corporation. TensorRT. https://developer.nvidia.com/tensorrt. Accessed:2024‐05‐20. 2024.
87 NVIDIA Corporation. Jetson Xavier Series. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/. Accessed: 2024‐05‐20. 2024.
88 Cristina Olaverri‐Monreal. “Autonomous vehicles and smart mobility relatedtechnologies”. In: Infocommunications Journal 8. 2 (2016), pp. 17–24.
89 ONNX Runtime Developers. ONNX Runtime. https://onnxruntime.ai/. 2021.
90 George Plastiras et al. “Edge intelligence: Challenges and opportunities of near‐sensormachine learning applications”. In: 2018 IEEE 29th International Conference on

Application‐Specific Systems, Architectures and Processors (ASAP). IEEE. 2018, pp. 1–7.
91 PX4. PX4 Autopilot. https://px4.io/. Accessed: 2024‐01‐10. 2024.
92 Morgan Quigley et al. “ROS: An open‐source Robot Operating System”. In: ICRA

Workshop on Open Source Software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.
93 Esteban Real et al. “Regularized evolution for image classifier architecture search”.In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp.4780–4789.
94 Red Hat. What is rkt? https://www.redhat.com/en/topics/containers/what-is-rkt.Accessed: 2024‐08‐14. 2024.
95 ROBOTIS. ROBOTIS Official Website. http://www.robotis.us. Accessed: 2024‐01‐20.2024.
96 Tara N Sainath et al. “Low‐rank matrix factorization for deep neural network trainingwith high‐dimensional output targets”. In: 2013 IEEE International Conference on

https://azure.microsoft.com/en-us/products/iot-edge
https://azure.microsoft.com/en-us/products/azure-sphere
http://www.research.ibm.com/articles/brain-chip.shtml
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/tensorrt
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://onnxruntime.ai/
https://px4.io/
https://www.redhat.com/en/topics/containers/what-is-rkt
http://www.robotis.us/

Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6655–6659.
97 Bharat Bhusan Sau and Vineeth N Balasubramanian. “Deep model compression:Distilling knowledge from noisy teachers”. In: arXiv preprint arXiv:1610.09650 (2016).
98 Sheng Shen et al. “Q‐BERT: Hessian based ultra low precision quantization of BERT”.In: Proceedings of the AAAI Conference on Artificial Intelligence 34. 05 (2020), pp.8815–8821.
99 Weisong Shi et al. “Edge computing: Vision and challenges”. In: IEEE Internet of

Things Journal 3. 5 (2016), pp. 637–646.
100 Laurent Sifre and Stéphane Mallat. “Rigid‐motion scattering for textureclassification”. In: arXiv preprint arXiv:1403.1687 (2014).
101 Shangquan Sun et al. “Logit standardization in knowledge distillation”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2024, pp. 15731–15740.

102 Chen Tang et al. “Mixed‐precision neural network quantization via learned layer‐wise importance”. In: European Conference on Computer Vision. Springer. 2022, pp.259–275.
103 Surat Teerapittayanon, Bradley McDanel, and Hsiang‐Tsung Kung. “Distributed deepneural networks over the cloud, the edge and end devices”. In: 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS). IEEE. 2017, pp.328–339.
104 TensorFlow Authors. TensorFlow Lite. https://www.tensorflow.org/lite. Accessed:2024‐05‐21. 2024.
105 Shikhar Tuli et al. “CODEBench: A neural architecture and hardware accelerator co‐design framework”. In: ACM Transactions on Embedded Computing Systems 22. 3(2023), pp. 1–30.
106 Yaman Umuroglu et al. “FINN: A framework for fast, scalable binarized neuralnetwork inference”. In: Proceedings of the 2017 ACM/SIGDA International Symposium

on Field‐Programmable Gate Arrays. 2017, pp. 65–74.
107 Min Wang, Baoyuan Liu, and Hassan Foroosh. “Factorized convolutional neuralnetworks”. In: Proceedings of the IEEE International Conference on Computer Vision

Workshops. 2017, pp. 545–553.
108 Zixiao Wang et al. “Sparse‐YOLO: Hardware/software co‐design of an FPGAaccelerator for YOLOv2”. In: IEEE Access 8 (2020), pp. 116569–116585.
109 Teng Wang et al. “ViA: A novel vision‐transformer accelerator based on FPGA”. In:

IEEE Transactions on Computer‐Aided Design of Integrated Circuits and Systems 41.11 (2022), pp. 4088–4099.
110 Paul J Werbos. “Backpropagation through time: What it does and how to do it”. In:

Proceedings of the IEEE 78. 10 (1990), pp. 1550–1560.
111 Guangxuan Xiao et al. “SmoothQuant: Accurate and efficient post‐trainingquantization for large language models”. In: International Conference on Machine

Learning. PMLR. 2023, pp. 38087–38099.

https://www.tensorflow.org/lite

112 Xilinx Inc. PYNQ (Python Productivity for Zynq). http://www.pynq.io. Accessed:2024‐08‐21. 2024.
113 Shixing Yu et al. “Unified visual transformer compression”. In: arXiv preprint

arXiv:2203.08243 (2022).
114 Qingyang Zhang et al. “OpenVDAP: An open vehicular data analytics platform forCAVs”. In: 2018 IEEE 38th International Conference on Distributed Computing

Systems (ICDCS). IEEE. 2018, pp. 1310–1320.
115 Shaojun Zhang et al. “Enabling edge intelligence for activity recognition in smarthomes”. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor

Systems (MASS). IEEE. 2018, pp. 228–236.
116 Xingzhou Zhang, Yifan Wang, and Weisong Shi. “pCAMP: Performance comparisonof machine learning packages on the edges”. In: USENIX Workshop on Hot Topics in

Edge Computing (HotEdge 18). 2018.
117 Xingzhou Zhang et al. “OpenEI: An open framework for edge intelligence”. In: 2019

IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE.2019, pp. 1840–1851.
118 Minxuan Zhou et al. “TransPIM: A memory‐based acceleration via software‐hardwareco‐design for transformer”. In: 2022 IEEE International Symposium on High‐

Performance Computer Architecture (HPCA). IEEE. 2022, pp. 1071–1085.
119 Yuxuan Zhou et al. “SP‐ViT: Learning 2D spatial priors for vision transformers”. In:

arXiv preprint arXiv:2206.07662 (2022).
120 Barret Zoph et al. “Learning transferable architectures for scalable imagerecognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 8697–8710.
Note* This chapter is contributed by Shaibal Saha, Qiren Wang, Lichen Xia, and YongtaoYao.

http://www.pynq.io/

5
Challenges and Solutions in Edge
Computing*
While implementing the potential applications of edgecomputing, it is essential to address the challenging keytechnical difficulties inherent in these applications. Torealize the vision of edge computing, researchers anddevelopers in computer systems, networks, and applicationservices need to engage in close collaboration andcommunication. This chapter summarizes several criticalissues that urgently need to be addressed in edgecomputing research. It proposes some solutions andresearch directions worth further exploration based onexisting research results.
5.1 Programmability and Data
ManagementThe efficiency and flexibility of edge systems are highlyrelated to programmability and data management. Thissection explores the challenges of making edge platformsprogrammable, focusing on the complexities of automaticprogram partitioning, naming conventions, and dataabstraction. Solving these issues enables develop systemsthat are not only easier to program but also more adept atmanaging the vast amount of data generated at the edge.
5.1.1 ProgrammabilityIn the cloud computing model, users write applications anddeploy them to the cloud. Cloud service providers maintainthe cloud servers, and users typically know little or nothing

about the operation of these programs. This transparencyof infrastructure is a key advantage of applicationdevelopment in the cloud computing model. User programsare usually written and compiled for the target platformand run on cloud servers.However, in the edge computing model, part or all of thecomputing tasks are migrated from the cloud to edgenodes. Since edge nodes are mostly heterogeneousplatforms and each node's runtime environment may differ,deploying user applications in the edge computing modelpresents significant challenges for programmers.Traditional programming methods such as MapReduce [10]and Spark [53] are unsuitable, necessitating research intonew programming methods based on edge computing.To achieve programmability in edge computing, Zhang etal. proposed a programming model based on hybrid cloudand edge computing, known as the Firework model [55]. Inthe era of the Internet of Everything, this model addressesthe need for distributed sharing and processing of big datawhen data production and consumption are both migratedto edge devices. It also enables the functionality ofcomputation flows in edge computing. Computation flowrefers to the series of computations that can be performedon data along its transmission path by edge nodes, allowingdata to be incrementally processed, reducing the amount ofdata transmitted.As shown in Figure 5.1, the Firework model consists of twotypes of nodes: Firework Model Managers and FireworkModel Nodes. It defines datasets and functions through avirtual shared data view, integrating geographicallydistributed data sources. Data stakeholders (FireworkModel Nodes) provide a set of predefined functioninterfaces for end‐users to access. When using theFirework system, users can focus more on business

implementation, while the communication, functionscheduling, and composition can be managed using theprogramming interfaces provided by Firework. Bydeploying and configuring Firework Model Nodes and theirmutual functions, the system achieves distributed sharingand processing of big data and supports the functionality ofcomputation flows.

Figure 5.1 Edge computing paradigm.The Firework model extends the visualization boundary ofdata, proposing a new programming paradigm fordistributed data processing in collaborative edgeenvironments. Each participant in the Firework model canachieve data processing on local devices and theintegration of cloud and edge computing resources.Additionally, it is important to note that the collaborativeissues in the edge computing model (such as

synchronization, data/state migration, etc.) are among thepressing problems in programmability that need to beaddressed.Satyanarayanan and coworker proposed the OpenStack++model [18], which is primarily applied in the cloudletarchitecture. It provides a programming model forapplication developers tailored for mobile environments.Amento et al. proposed the FocusStack model [1], whichsupports the deployment of diverse and complexapplications on various potential IoT edge devices. Edgedevices are constrained in terms of computing, powerconsumption, and connectivity, and they are highly mobile.FocusStack first identifies edge devices with sufficientresources, then deploys and runs applications on thesedevices. This model allows developers to focus solely onprogram design while the FocusStack model determinesthe appropriate edge devices and tracks their status. Sajjadet al. proposed the SpanEdge model [41], which unifiescloud central nodes and near‐edge central nodes, reducingnetwork latency caused by wide‐area network connections.It provides a programming environment where developerscan focus on developing stream processing applications,specifying which parts of the application need to run nearthe data source without worrying about the data sourceand its geographical distribution.
5.1.2 Automatic Program PartitioningIn the edge computing environment, as the computationalcapability of edge nodes improves, migrating applicationsfrom cloud centers to edge nodes becomes a significantchallenge. Distributing originally standalone applicationsacross different network edge nodes is crucial for thefeasibility and efficiency of application design in edgecomputing systems. This process directly impacts theexecutability and efficiency of edge computing applications.

Designing and implementing partitioning techniques forapplications to ensure the reasonable allocation ofapplication components among cloud‐edge and edge‐edgeheterogeneous nodes is essential for achieving highperformance and reliability in edge computingenvironments.Program partitioning in edge computing environmentsneeds to consider various state information, such asresources, energy consumption, and response latency ofedge nodes, to decompose applications into multiplecomponents while preserving the original application'ssemantics. These components are then placed ontodifferent nodes. The existing partitioning methods mainlyinclude static and dynamic partitioning: static programpartitioning is completed during the compilation process,commonly seen in message passing interface (MPI)programming and heterogeneous multicore programmingbased on general‐purpose graphics processing unit(GPGPU) computing cards; dynamic program partitioningis primarily performed during the runtime.The edge computing environment shares certainsimilarities with distributed environments, allowingprograms to be designed, implemented, and debugged atthe central node to ensure they can run on edge nodes.However, the partitioned programs need to be distributedacross various edge nodes. For homogeneous edge nodes,this is similar to program partitioning in a distributedsystem environment. Nevertheless, edge computingenvironments often have heterogeneous nodes, makingtraditional partitioning methods insufficient for edgecomputing needs. These traditional methods do notconsider the characteristics of the edge computingenvironment, such as resource heterogeneity, varying datasources, and edge node mobility. Therefore, programpartitioning in edge computing environments, in addition to

static and dynamic partitioning, needs to address thespecificities of cloud‐edge and edge‐edge partitioning.The concept of the program dependence graph (PDG) [12]can be leveraged, retaining the original programcomponent nodes while adding features like heterogeneousresource availability weights, location distance parameters,and communication costs between edge nodes in the edgecomputing environment. Furthermore, in addition to theoriginal dependency relations (such as data dependencyand control dependency), the PDG can incorporatedependencies specific to the edge computing environment,including resource availability dependency, locationmobility dependency, and response time dependency.These dependencies can be utilized in the dependencyanalysis process, applicable not only in the staticcompilation phase and dynamic runtime phase but also inthe cloud‐edge and edge‐edge program partitioning. Thisensures that applications can be reasonably allocated todifferent edge nodes while guaranteeing the reliability andhigh performance of the execution of different componentson the edge nodes.
5.1.3 Naming ConventionsA significant assumption in the edge computing model isthe enormous number of edge devices. At the edge nodes,numerous applications operate, each with its ownframework for service delivery. As with any computingsystem, the naming scheme in edge computing holdssignificant importance for programming, addressing,device identification, and data communication. Yet, anefficient and standardized naming mechanism tailored forthe edge computing paradigm has yet to be established.Edge practitioners often must familiarize themselves withdiverse communication and network protocols to interactwith the heterogeneous devices within their systems. The

naming scheme for edge computing must accommodatedevice mobility, highly dynamic network topologies, privacyand security concerns, and scalability to manage theimmense volume of unreliable devices effectively.Traditional naming mechanisms like domain name system(DNS) and uniform resource identifiers perform well incurrent networks. However, they often lack the flexibilityneeded to support dynamic edge networks, where manydevices may be highly mobile and resource‐constrained.Additionally, IP‐based naming schemes can be toocumbersome for resource‐constrained edge devices due totheir complexity and overhead.New naming mechanisms such as Named Data Networking(NDN) [54] and MobilityFirst [40] have been proposed foredge computing. NDN offers a hierarchically structurednaming scheme suited for content‐centric networks,enhancing scalability and human‐friendly servicemanagement at the edge. However, integrating NDN withother protocols like Bluetooth or ZigBee requires additionalproxies and raises security concerns regarding hardwareinformation isolation.MobilityFirst addresses mobility support by separatingnames from network addresses, which is beneficial forhighly mobile edge environments. However, itsrequirement for a globally unique identifier (GUID) fornaming may not be practical for fixed‐edge environmentslike home networks. Moreover, GUIDs are not user‐friendlyfor service management.For smaller, fixed‐edge environments such as homes, asolution could involve the edge operating system (edgeOS)assigning a network address to each device based on aunique human‐friendly name. As shown in Figure 5.2, thisapproach includes information about location, role, anddata description in the name (e.g.,

“kitchen.oven2.temperature3”). This human‐friendlynaming convention simplifies service management, devicediagnosis, and component replacement. Users and serviceproviders can easily understand notifications from theedgeOS, facilitating quick actions without the need forerror codes or network reconfiguration. Furthermore, thisnaming approach enhances programmability for serviceproviders while safeguarding hardware information, thusimproving data privacy and security. It allows the mappingof human‐friendly names to unique identifiers used foredgeOS management and network addresses (e.g., IPaddresses or MAC addresses) for supporting variouscommunication protocols like Bluetooth, ZigBee, or WiFi.Addressing highly dynamic edge environments at a city‐wide scale remains an ongoing challenge, requiring furtherinvestigation and community collaboration.

Figure 5.2 The naming mechanism for the edge operatingsystem (edgeOS).Source: Shi et al. [43]/IEEE.

5.1.4 Data AbstractionVarious applications running on the edgeOS interact withthe service management layer through wirelesscommunication, relying on position indicators. Dataabstraction has been extensively studied in wireless sensornetworks and cloud computing paradigms. However, edgecomputing introduces new challenges due to the vastnumber of IoT devices generating data, such as in a smarthome environment. Here, nearly all devices continuouslyreport data to the edgeOS, scattered throughout the home.For instance, a thermometer might report temperatureevery minute, while a security camera records video sent tothe gateway, often without immediate consumption beforebeing replaced by newer footage.Besides, applications in edge computing systems use dataor provide services through service management layerAPIs. Compared to cloud computing, data abstraction inedge computing is more challenging. In a smart home,intelligent devices, as data producers, send data to theedge computing system. However, there are fewer devicesdeployed around the home, and most network edge devicesperiodically send sensed data to a gateway. For instance, atemperature sensor sends temperature data to the gatewayevery minute, though it is used infrequently. Based on this,Shi et al. [43] proposed reducing human involvement inedge computing by having edge nodes process the data andinteract with users proactively. In this scenario, thegateway layer preprocesses the data (e.g., denoising, eventdetection, and privacy protection) before sending it to theupper layers of the system as source data for applicationservices. This process faces the following three challenges:
Diversity of data formats from different devices:Due to considerations of data privacy and security,source data is transparent to the tasks running on the

gateway. These tasks should extract the informationneeded for processing from an integrated data table.Shi et al. [43] proposed a table structure containingnumbered, named, timestamped, and data fields,allowing edge device data to be stored in this table.However, this hides the details of the sensed data,affecting its usage.
Uncertainty in the degree of data abstraction: Ifdata abstraction filters out too much source data, someapplications or services may fail due to insufficientinformation. Conversely, retaining a large amount ofsource data poses a challenge for system developers interms of data storage and management. Additionally,the data sent by edge devices is often unreliable.Extracting useful information from unreliable sourcesremains a technical challenge.
Applicability of data abstraction: Edge devicescollect data and provide it for application use,completing specific services. These applications shouldhave read and write permissions for devices to cater touser‐specific needs. The data abstraction layercombines data representation and operations,providing a common interaction interface for devicesconnected to the edge computing system. Due to theheterogeneity of edge devices, data representation andoperations vary, creating a barrier to general dataabstraction.

Given the practical requirements of real‐world applications,researchers aim to reduce human intervention in edgecomputing by enabling edge nodes to preprocess data andengage proactively with users. At the gateway level,preprocessing tasks encompass noise reduction, eventdetection, and privacy protection before transmittingprocessed data to upper layers for service delivery.

However, several challenges accompany this strategy.Firstly, data from diverse devices arrives in varying formats(refer to Figure 5.3). To uphold privacy and security,gateway applications should access unified data tableswithout exposure to raw data specifics, using astandardized format (e.g., 0000, 12:34:56 PM, 01 January2016, kitchen.oven2.temperature3, 78). Nevertheless,abstracting data at this level risks reducing its practicalutility.

Figure 5.3 Data abstraction in edge computing scenarios.Source: Shi et al. [43]/IEEE.Secondly, determining the appropriate level of dataabstraction is complex. Filtering too much raw data maylimit application learning capabilities, whereas storing vastamounts of raw data poses storage challenges. Moreover,data reliability concerns persist due to sensor inaccuracies,hazardous environments, and unreliable wirelessconnections, posing ongoing challenges for IoT developersseeking to extract useful insights from potentiallyunreliable data sources.Another critical aspect of data abstraction involvesenabling applications to perform operations on connecteddevices. Data abstraction layers serve as public interfaces

for these operations, accommodating the heterogeneousnature of connected devices with diverse datarepresentations and operational capabilities, therebycomplicating universal data abstraction efforts.
5.2 Resource Allocation and
OptimizationEfficient resource allocation and optimization are critical todeploying edge computing systems successfully. With theever‐increasing demand for low‐latency processing andreal‐time data handling, scheduling strategies, dataoffloading, and load balancing play a pivotal role. Thissection delves into these optimization challenges,highlighting the need for intelligent resource managementto ensure that edge computing systems meet performanceexpectations while remaining scalable and adaptable.
5.2.1 Scheduling StrategiesThe scheduling strategies in edge computing aim tooptimize resource utilization, reduce response time,minimize energy consumption, and enhance the overallperformance of task processing in the edge computingenvironment. Compared to traditional distributed systems,the scheduling strategies of edge computing systems sharesome similarities, such as the distributed handling ofcomputational tasks and resources across various nodes.However, there are notable differences, such as theheterogeneity of computational resources, which is moreakin to cloud computing systems. Unlike cloud computing,edge computing scheduling strategies are closely tied totheir specific computing environments, primarily due to theresource‐constrained nature of edge computing systems.Additionally, these strategies must consider the overhead

caused by the mobility of users, which is different from thescheduling strategies in cloud computing systems.One of the significant challenges in edge computing is howto schedule computational resources effectively. Thescheduling strategy in edge computing is related toresources, ensuring that the resources used by a specificapplication during its execution are efficiently managed.Given the heterogeneity of data, computation, storage, andnetwork resources in edge computing task scheduling, it isnecessary to design heterogeneous resource schedulingstrategies tailored to different application instances.Moreover, the diversity of applications requires schedulingstrategies that can support various types of applications,ensuring their normal operation. These strategies shouldmaximize the utilization of limited computational resourcesto enhance the executability and efficiency of applicationsin the edge computing environment while minimizingresource usage. For edge computing resource providers orservice providers, the scheduling strategy should alsomaximize resource benefits. Thus, real‐time monitoring andtracking of application execution and resource changes areneeded to achieve dynamic scheduling of applications andthe resources required for their execution.Existing research indicates that scheduling strategies inedge computing environments can be implemented usinggraph theory methods [3]. Specifically, each application isrepresented by a graph structure where each noderepresents a component of the application, and the edgesbetween nodes represent communication between them.Physical resources can also be represented by a graph,with nodes representing computational resources (such asservers) and edges representing the relationships betweenthem. This approach transforms the resource schedulingproblem into a mapping relationship between resourcenodes and applications. In terms of resource scheduling,

parts of user applications can run on the central cloud oron resources at the network edge. In edge computingenvironments, resource availability, network conditions,and user locations are dynamically changing. Thus, parts ofan application may need to migrate from one edgenode/central cloud server to another. An optimalscheduling strategy for an application must considernetwork status and user mobility.Professor Qun Li's research team [52] has focused on theissue of edge computing response latency, providing asolution for task scheduling between edge nodes. Theirapproach primarily addresses the state of task executionbetween edge nodes using three strategies: shortesttransmission time first, shortest queue length first, andshortest scheduling delay first. These strategies are allrelated to delay time, leveraging one of the advantages ofedge computing—reducing data transmission latency.Designing and implementing a scheduling strategy thateffectively reduces task execution delay at edge nodes isone of the challenges encountered in the research on edgecomputing scheduling strategies.
5.2.2 Data Offloading and Load BalancingAn edge computing‐based system is inherently a distributedsystem [37, 39], leveraging diverse data sources anddistributed computational capabilities. When individualedge devices or servers reach their processing limits, taskpartitioning and data offloading becomes essential.Effective load balancing becomes more critical as deviceperformance decreases, especially in scenarios like vehicle‐edge collaboration [30] (as shown in Figure 5.4). Thisinvolves partitioning tasks and data across multiple devicesor servers, and aggregating results to achieve overallsystem load balancing. Load balancing and data offloadingoptimize computing and storage resources across layers,

preventing single‐resource overload, reducing latency, andenhancing the efficiency, reliability, availability, andscalability of the edge computing‐based systemredundantly. However, challenges persist in data offloadingand load balancing in edge computing that require ongoingresearch and improvement.

Figure 5.4 Offloading framework in edge computingscenarios for vehicle‐edge collaboration.Source: Luo et al. [30]/IEEE.
5.2.2.1 Data OffloadingIn conventional edge computing systems, data offloadingtypically focuses on large servers, with individual devicesoften overlooked. Conversely, in edge computing‐basededge computing systems, every device capable ofprocessing data necessitates consideration for dataoffloading, significantly increasing the complexity of thisissue. Moreover, due to the constrained computing andstorage capacities of edge devices, frequent data offloadingis required to balance the overall system load. This results

in high throughput in the edge network, intensivebandwidth usage, and potential delays in task execution. Toaddress these challenges, tailored data offloading schemesmust be devised based on specific requirements. Generally,depending on offloading needs and application contexts,two modes of data offloading can be employed: fulloffloading and partial offloading.
(i) Full Data Offloading: When considering fulloffloading, factors such as time delay and energyconsumption play crucial roles. If devices havesufficient energy and there is a stringent delayrequirement, the offloading scheme should prioritizeminimizing delay. Optimal solutions involve leveragingtask queue information, resource utilization of edgenodes and servers, and routing status to determine themost efficient full data offloading strategy [27].Additionally, optimizing energy consumption throughan optimization framework while meeting delayconstraints is paramount [24].(ii) Partial Data Offloading: Unlike full offloadingwhich focuses on time delay and energy consumption,partial offloading involves dividing data from a task intoblocks, with only selected blocks being offloaded [7].Decisions on which blocks to offload depend on variousparameters such as total data volume, device resourceutilization, channel conditions, and energy consumption[33]. These parameters are carefully considered tojointly optimize the allocation of communication andcomputing resources. Despite advancements, currentoffloading strategies in edge devices require furtheradaptation and optimization to align with the specificcharacteristics of industrial environments.

5.2.2.2 Load BalancingWhen designing a data offloading scheme, considerationstypically revolve around minimizing both time delay andenergy consumption. However, such schemes mayinadvertently overload certain devices, necessitatingeffective load‐balancing strategies [31]. The primary goalof load balancing is to ensure equitable distribution ofworkload across edge nodes and maintain stablecommunication links, thereby optimizing the utilization ofcomputing and network resources. Given the scale andfrequency of operations in edge systems, it becomesimperative to enhance existing load‐balancing algorithms toalign with the unique characteristics of theseenvironments.In edge computing‐based systems, task and load data arecollected from far‐edge, mid‐edge, and near‐edge devicesand servers, organized hierarchically, and integrated withartificial intelligence (AI) to develop load balancingmechanisms tailored to each layer. Furthermore, SDN(software‐defined networking) can be leveraged toorchestrate load balancing across the entire edge network,simplifying scheduling and routing complexities.
5.2.3 Optimization MetricsIn the edge computing model, different layers have varyingcomputational capabilities, making load distribution acritical issue. It is necessary to determine which layershould handle specific loads or how loads should bedistributed across each layer. Various allocation strategiesare typically employed, such as evenly distributing loadsacross all layers according to the number of layers, orassigning the maximum load to a single layer. In extremecases, all tasks might be allocated to either the edge or thecloud. Several optimization metrics should be considered

when selecting the optimal load distribution strategy,including latency, bandwidth, energy consumption, andcost [43].
5.2.3.1 LatencyLatency is one of the most important metrics for evaluatingperformance [8, 11], especially in interactive applications.Cloud servers offer high computational power, completingcomplex tasks like image and speech recognition in a shorttime. However, latency is influenced not only bycomputation time but also by transmission time. Longdelays in wide‐area networks can significantly impact real‐time or interaction‐intensive applications [6]. To reducelatency, loads should be executed at the nearest layer withcomputational capability. For instance, in a smart city,users can preprocess photos on their local devices beforesending information about a missing person to the cloud,avoiding the need to upload all photos to the cloud. Theclosest physical layer might not always be the optimalchoice. It is necessary to avoid unnecessary waiting timesby considering resource usage to find a reasonableoptimization layer. For example, if a user is playing a gamethat occupies a lot of the phone's computational resources,uploading photos through the nearest gateway would bemore efficient.As depicted in Figure 5.5, Xu et al. [48] proposedChatCache, a scalable edge system that incorporates ahierarchical cache design to serve both single and multipleusers. On most evaluated platforms, ChatCachesignificantly reduces user‐perceived latency by over 91.7%for voice requests and more than 81.6% for text requests.

Figure 5.5 The design of ChatCache.Source: Xu et al. [48]/IEEE.
5.2.3.2 BandwidthFrom a latency perspective, high bandwidth can reducetransmission delays, especially for large data transfers [9].For short‐distance transmissions, future research canexplore high‐bandwidth wireless access technologies tosend data to the edge. If the edge can handle tasks, itsignificantly improves latency and saves transmissionbandwidth between the edge and the cloud. In smarthomes, gateways can handle most data through WiFi orother high‐speed transmission methods. Short transmissionpaths also improve data transfer reliability. If edge devicescannot meet computational requirements, they canpreprocess source data to reduce the upload volumesignificantly. In a smart‐city scenario, local preprocessingof photos before uploading can save bandwidth and reduceuser data transmission. Globally, the saved bandwidth canbe used for other edge user data uploads and downloads.When using high bandwidth in edge computing, it isessential to evaluate the appropriate speed configurationfor the edge. Additionally, to avoid competition and latency,the computational capacity and bandwidth at each layermust be considered for load distribution.

5.2.3.3 Energy ConsumptionThe battery is the most constrained resource for edgedevices. For terminal devices, offloading tasks to the edgelayer can save energy [42]. For a specific load, determiningwhether migrating the entire or part of the load to the edgelayer is energy‐efficient requires balancing computationand transmission energy consumption. Generally, it isnecessary to determine whether the load is computation‐intensive and how many resources are required to supportlocal execution. Besides network signal strength [21, 40]found that data size and available bandwidth also affecttransmission energy consumption. When transmissionenergy consumption exceeds local computation energyconsumption, edge computing is more suitable. If the userfocuses on the entire edge computing process rather thanthe terminal, the total energy consumption should equalthe sum of each layer's energy consumption. Like theendpoint layer, other layers' energy consumption equalsthe sum of local and transmission energy consumption.Workload distribution strategies need to optimize thisbalance. When the local data center layer is busy, loadsneed to be uploaded to higher layers. Multilevel datatransmission incurs extra overhead, increasing energyconsumption compared to executing tasks at the terminal.
5.2.3.4 CostFrom the perspective of service providers (e.g., YouTube,Amazon, and Taobao), edge computing can ensure lowerlatency and energy consumption, increasing throughput,improving user experience, and ultimately leading to higherprofits. For example, based on residents' preferences, avideo could be played at the building layer edge, while thecity layer edge handles more complex tasks to increaseoverall throughput. Service providers invest in building andmaintaining each layer of devices. To fully utilize local data

at each layer, providers can charge users based on datalocation. Developing new cost models that ensure serviceprovider profits and user affordability is an urgent issue.Thus, load distribution needs to consider the interrelationbetween these metrics. For example, due to energyconstraints, a workload might need to be completed at thecity data center layer, where energy limitations impactlatency more than at the building service layer.Optimization metrics should be weighted and prioritized fordifferent workloads to systematically choose a reasonabledistribution strategy. Additionally, cost analysis should beconducted during operation, and service providers shouldconsider the interference between concurrent loads andresource usage.
5.3 Security, Privacy, and Service
ManagementAs edge computing continues to expand, security, privacy,and effective service management have become paramountconcerns. The distributed nature of edge networksintroduces unique vulnerabilities that must be addressed toprotect sensitive data and ensure system integrity. In thissection, the strategies for safeguarding privacy andsecurity in edge environments will be discussed, as well asthe challenges of managing edge services effectively in adecentralized infrastructure.
5.3.1 Privacy Protection and SecurityPrivacy protection and security are critical servicesprovided by edge computing. For instance, in an Internet ofThings (IoT) system deployed within a home, a significantamount of private information is captured by sensors.Providing services while protecting privacy is a challenge.

Shi et al. [43] found that performing computations near thedata source is an effective method for protecting privacyand data security. The research on privacy protection andsecurity in edge computing faces the following challenges:
Awareness of Privacy and Security in Society:Taking WiFi network security as an example, a survey[12] indicates that among over 400 million homes usingwireless connections, 49% of WiFi networks areinsecure, and 80% of households still use the defaultpasswords to set up their routers. For public WiFihotspots, 89% are insecure. If users do not protect theirpersonal privacy data, it is easy for others to usedevices like network cameras and health monitors tospy on personal data.
Dual role of edge devices as data collectors and
owners: Data collected by devices like smartphones isstored and analyzed by service providers. A better wayto protect privacy is to keep data at the edge and letusers own their data. Data collected by network edgedevices should be stored locally, and users should havethe right to restrict service providers' use of this data.To protect user privacy, highly sensitive data should bedeleted from edge devices.
Lack of effective tools for data privacy and
security: Network edge devices have limitedresources, and existing data security methods are notfully applicable to edge computing. The highly dynamicenvironment at the network edge also makes it morevulnerable to attacks. To enhance the protection ofprivate data, researchers are studying privacyprotection platforms. For example, the Open mHealthplatform developed by Deborah's team [22]standardizes the processing and storage of health data.

However, future research needs to develop more toolsto handle data in edge computing.
5.3.1.1 Sensor SecurityIn today's landscape, edge devices like autonomousvehicles integrate diverse sensors (e.g., cameras, globalnavigation satellite system (GNSS), and LiDAR) to perceivetheir surroundings. These sensors face direct securitythreats, particularly from attacks that manipulate orobstruct sensor data without compromising the computingsystem itself. Attackers exploit vulnerabilities in sensoroperation to interfere, obscure, or falsify data, therebydisrupting edge device functionality [35].Cameras serve as fundamental visual sensors in intelligentand surveillance systems. Modern edge devices oftendeploy multiple cameras with various lenses [15, 28].Camera inputs are pivotal in tasks such as object detectionand tracking. For instance, in autonomous vehicles, apopular type of edge device, attackers can deceive thesesystems by placing counterfeit traffic signals, signs, orobjects (e.g., vehicles and pedestrians), leading to incorrectdecisions [36]. Attackers also employ high‐brightness IRlasers to blind cameras by interfering with infraredwavelengths, thus compromising their ability to provideaccurate visual data [36, 46].Edge devices rely on GNSS and inertial navigation systems(INS) for real‐time location updates. GNSS sensors aresusceptible to jamming and spoofing attacks, whereattackers disrupt receiver function using out‐of‐band or in‐band signals [20]. Furthermore, attackers can deploy GNSStransmitters near vehicles to falsify location data byreplicating genuine signals [20]. INS sensors, sensitive tomagnetic fields, can be manipulated by powerful magnetic

interference, resulting in erroneous orientation readingsfor the targeted edge devices.LiDAR technology produces 3D environmental data bymeasuring distances using laser light pulses. Attackers candeceive LiDAR sensors using absorbent or reflectivesurfaces, causing them to misidentify obstacles in trafficscenarios [35]. Manipulating the laser pulses can furtherdistort LiDAR data, leading to inaccuracies in objectposition and distance readings. Ultrasonic sensors andradars, crucial for passive perception and as a final defensefor edge devices, have also been vulnerable to spoofing andjamming attacks through specialized signal generators andtransmitters [50].
5.3.1.2 Securing Edge Networks and PlatformsSecurity remains a critical concern in edge computing,prompting several studies to address security challengesacross various scenarios. Existing literature categorizesthese efforts into two main areas: network security withinedge environments and security measures within theoperational context of edge computing.Bhardwaj et al. [4] introduced ShadowNet, a frameworkthat deploys edge functions across distributedinfrastructure to monitor IoT traffic and preemptivelydetect IoT‐DDoS attacks. Compared to conventionalmethods, ShadowNet achieves detection 10 times fasterand mitigates 82% of traffic before it reaches the broaderInternet, thereby reducing overall security risks. Yi et al.[51] proposed an approach leveraging SDN to enhanceedge network security through improved monitoring,intrusion detection, and resource access control, offeringvaluable insights into mitigating network threats in edgecomputing environments.

Ning et al. [34] evaluated various trusted executionenvironments (TEEs) like Intel Software Guard Extensions(SGX), ARM TrustZone, and AMD secure encryptedvirtualization (SEV) on heterogeneous edge platforms.Their work demonstrates the deployment of TEEs to bolstersecurity with minimal performance overhead in edgecomputing scenarios [34]. Additionally, Li et al. [26]developed Kernel Level Resource Auditing (KLRA), a tooltailored for IoT and edge operating systems. KLRAmonitors system behavior at a granular level, promptlyissuing security alerts upon detecting abnormal systemactivities, thereby fortifying operating system security onedge devices.
5.3.1.3 Data Sharing SecurityEdge computing offers significant advantages through thegeneration of vast real‐time data streams from diversedevices, sites, and infrastructures [39]. Analyzing thesedata and making informed, multidimensional businessdecisions can substantially enhance industrial productionefficiency [23]. However, traditional edge computingsystems tend to be dominated by vertical, closedapplications that focus solely on maintaining the operationsof individual machines or sites, thereby creating isolateddata silos. Integrating edge computing helps break downthese data silos and enhances data flexibility. Nevertheless,this integration introduces complexities in securely sharingdata, particularly concerning data security and sharingamong various specialized applications and stakeholders.Two primary challenges arise in edge data sharing: firstly,the proliferation of data interfaces increases the risk ofsevere consequences such as intrusion and data breaches;secondly, the performance limitations of edge devices oftenhinder the direct implementation of robust securityalgorithms. The adoption of blockchain technology within

edge computing introduces both new challenges andopportunities for securely sharing data [14].
Distributed Edge Data Storage Blockchain‐baseddistributed data storage is pivotal for enabling secure datasharing in edge computing. When integrated withblockchain, data from edge devices becomes tamper‐proof,enhancing security [49]. Recent studies on distributedstorage leveraging technologies like the InterPlanetary FileSystem (IPFS) demonstrate its effectiveness as a scalablesolution. Storing transaction data in IPFS and including theIPFS hash value in blockchain blocks significantly reducesblockchain data volume. Blockchain also opens avenues fornovel business models, such as monetizing edge services.Despite these advantages, there remains a dearth ofcomprehensive research on systematically integratingblockchain into edge computing to ensure secure datasharing. Addressing these gaps is crucial for advancing thefield and resolving outstanding research challenges.Recently, Wang et al. [47] performed a comprehensiveanalysis of onboard sensors and controller area network(CAN) bus data in vehicles, which are a type of edgedevice. They introduced a novel mathematical model thataddresses the crucial aspect of data storage requirementsfor autonomous vehicles, as illustrated in Figure 5.6.

Figure 5.6 Storage system architecture.Source: Wang et al. [47]/ACM, Inc.
Access Control for Edge Data Secure data sharinghinges on implementing effective access control schemes,which form the foundation of data security in variousapplications, including connected vehicles [25, 49, 56].While blockchain integration in edge computing systemscan address some data security issues, it introduceschallenges such as public data exposure and significantprivacy concerns due to data visibility to all system nodes.Therefore, exploring access control solutions that combineattribute‐based access control with blockchain holdspromise for achieving optimal access control effectiveness.However, the inherent distribution and heterogeneity ofedge computing environments necessitate tailored

approaches for practical implementation within blockchain‐based edge computing systems.
5.3.2 Edge Service ManagementIn edge computing, service management is crucial forensuring a reliable system. Any reliable system typicallyexhibits four characteristics: differentiation, extensibility,isolation, and reliability, collectively referred to as theDifferent, Extensibility, Isolation, Reliability (DEIR) model[43].
5.3.2.1 DifferentiationWith the rapid proliferation of IoT deployments, a variety ofservices are expected to operate at the edge of networks,such as Smart Home applications. These services willexhibit diverse priorities; for instance, critical services likedevice diagnostics and failure alarms should be prioritizedover nonessential services. Similarly, health‐relatedservices such as fall detection or heart failure monitoringshould take precedence over entertainment services.
5.3.2.2 ExtensibilityExtensibility poses a significant challenge at the edge ofnetworks. Unlike mobile systems, IoT devices are highlydynamic. Can newly purchased devices seamlesslyintegrate into existing services? Can replacement deviceseasily adopt the roles of their predecessors? Thesequestions necessitate a flexible and extensible design of theservice management layer in edge operating systems(edgeOS).
5.3.2.3 IsolationIsolation emerges as another critical issue at the edge ofnetworks. In mobile operating systems, an application

failure often leads to system crashes and reboots. Indistributed systems, shared resources are typicallymanaged using synchronization mechanisms like locks ortoken rings. However, in smart edgeOS environments,these challenges become more complex. Multipleapplications may share the same data resources—forexample, light controls. If one application fails, usersshould still retain control over their lights without system‐wide disruption. Similarly, if a user removes the soleapplication controlling lights, the lights should remainoperational rather than lose connectivity to the edgeOS.Addressing these challenges may involve deploying arobust framework for application deployment andundeployment. Detecting conflicts before applicationinstallation can warn users and prevent potential accessissues. Furthermore, effective isolation must safeguarduser privacy by ensuring that third‐party applicationscannot access sensitive personal data (e.g., activitytracking vs. electricity usage data). Implementing well‐designed access control mechanisms within the servicemanagement layer of the edgeOS is crucial to resolvingthese issues effectively.
5.3.2.4 ReliabilityReliability represents a pivotal challenge at the edge ofnetwork environments, encompassing perspectives fromservice, system, and data considerations.

Service perspective: Identifying the precise cause ofservice failures at the edge can be inherently complex.For instance, when an air conditioner malfunctions,potential causes might range from a severed powercord to compressor failure or depleted battery in thetemperature controller. Sensor nodes can easilydisconnect due to battery depletion, poor connectivity,

or component wear. Merely maintaining currentservices during node disconnections is insufficient;informing users about nonresponsive components orpreemptively alerting them to potential failures wouldsignificantly enhance user experience. Adaptationsfrom wireless sensor networks or industrial protocolslike PROFINET [11] offer potential solutions to addressthese challenges.
System perspective: Maintaining the networktopology and ensuring each system component cantransmit status and diagnostic data to the edgeOS arecritical system‐level requirements. This capabilityfacilitates tasks such as failure detection, devicereplacement, and data quality assurance throughoutthe system.
Data perspective: Reliability challenges in datasensing and communication are prevalent at the edge.Devices may fail due to various factors and cantransmit low‐fidelity data under unreliable conditionssuch as low battery levels [6]. New IoT communicationprotocols have been proposed to support a largenumber of sensor nodes and dynamic networkconditions [9], yet their reliability often falls short ofstandards set by protocols like Bluetooth or WiFi.Addressing how systems can maintain reliabilitydespite unreliable sensing and communication requiresleveraging multiple reference data sources andhistorical records, posing an ongoing challenge.

Moreover, the concept of a “function cache” has beenintroduced for managing the lifecycle of edge services [29].This is particularly crucial when multiple services operateon resource‐constrained edge devices, as ensuring thatlimited resources can dynamically support the requiredservices is vital for both automakers and researchers in the

field. Efficient and dynamic management of edge servicesthus becomes essential. As illustrated in Figure 5.7, Lu etal. [29] presented EdgeWare, an open‐source, extensible,and flexible middleware designed to manage edge serviceexecution. EdgeWare offers four key features: on‐demand model switching, enabling the easy transition andupgrading of machine learning models, functionconsolidation and deduplication to eliminate redundantcopies of recurring functions and maximize the reusabilityof vehicle services, the creation of event‐drivenapplications to reduce workload, and dynamic workflowcustomization, allowing for the extension of functionalitythrough customizable workflows.

Figure 5.7 An example of function consolidation anddeduplication. Each edge service is encapsulated into afunction module and the function is consolidated for fasterreuse.Source: Lu et al. [29]/Springer Nature.
5.4 Deployment Strategies and
IntegrationDeploying edge computing systems requires carefulconsideration of both the hardware and softwarecomponents, especially when integrating with verticalindustries. The unique requirements of deploying edgenodes and AI models on resource‐constrained devices posesignificant challenges. This section explores the strategiesfor successful deployment, including the selection ofappropriate hardware and software, and discusses how

edge computing can be tailored to meet the specificdemands of various industrial applications.
5.4.1 Edge Nodes DeploymentThe rise of edge computing has attracted significantinterest across industries, but the real‐world deployment ofedge nodes presents several critical challenges that need tobe addressed. Key issues include how to effectively selectedge nodes and data sources for computation, and how toensure the reliability of these edge nodes.
5.4.1.1 Selecting Edge NodesIn practical applications of edge computing, users have theflexibility to choose edge nodes along the path from thecloud to the endpoint to reduce latency and bandwidthusage. However, because edge nodes vary in computationalpower and network bandwidth, the choice of node cansignificantly impact computation latency. Existinginfrastructure, such as telecommunications base stations,can serve as edge nodes. For example, a handheld devicetypically connects to the nearest base station beforeaccessing the backbone network, which can increaselatency. If the device could instead connect directly to anedge node on the backbone network, latency could bereduced. Thus, selecting the right edge node to minimizecommunication delays and computational overhead is acritical issue. This also raises questions about how existinginfrastructure can be integrated with edge nodes, whetheredge computing will foster a new ecosystem, and whetherit will bring about revolutionary changes to the currentinfrastructure.
5.4.1.2 Choosing Edge DataWith numerous edge nodes generating diverse types ofdata, these datasets often overlap, presenting multiple

potential solutions for a given problem. For instance, inreal‐time traffic monitoring, vehicle speed can becalculated using data from on‐board cameras, traffic lights,or roadside units. The challenge lies in selecting theoptimal data source for a specific application to minimizelatency and bandwidth while maximizing serviceavailability.
5.4.1.3 Ensuring Edge Node ReliabilityIn edge computing, data storage and computational tasksare heavily dependent on edge nodes, which lack the robustinfrastructure of cloud data centers. Many edge nodes areexposed to environmental factors, making their reliability akey concern. For example, public safety solutions that relyon computer vision use smart cameras for data storage andprocessing. However, these cameras are vulnerable tophysical damage under extreme weather conditions, suchas strong winds shifting their angles or heavy snowfallobstructing their view. In these scenarios, additionalinfrastructure is needed to ensure the physical reliability ofedge nodes. Moreover, since edge data often has uniquespatial and temporal characteristics, it is critical to designeffective backup mechanisms to ensure data reliability.Addressing the physical and data reliability of edge nodesthrough infrastructure support is a critical research area.Several initiatives have already been undertaken to deployedge nodes effectively. Many cloud service providers arenow offering edge nodes that push high‐bandwidth, low‐latency, and localized services closer to the network'sedge [2, 17, 32]. This approach not only improves serviceefficiency and capabilities but also maximizes the benefitsof multiple stakeholders in the edge computing ecosystem.

5.4.2 Deployment of AI Models on Resource‐
Constrained Edge DevicesIn current edge computing systems, edge devices aretypically limited to performing lightweight computingtasks. To enable edge devices and servers to handle morecomplex tasks with improved data‐processing performanceand reduced latency, edge intelligence is applied within theedge computing scenarios. This trend represents asignificant development in edge computing for industrialIoT (IIoT) environments [39]. However, training anddeploying AI models on edge devices pose challenges dueto their constrained computing and storage resources.Resolving this conflict involves two fundamentalapproaches: enhancing the computing power of edgedevices and simplifying or partitioning AI models deployedon these devices.
5.4.2.1 Edge Intelligence DevicesEdge devices gather substantial data and require fast,accurate computing models to provide responsive feedback[126]. Deploying AI algorithms on edge devices allowsthese models to leverage extensive source data forenhanced accuracy, enabling timely and precise decision‐making. This integration theoretically achieves asynergistic blend of edge computing and AI [38]. Yet,optimizing devices for edge AI and realizing their fullcomplementarity remains a formidable challenge.To bolster the computing capabilities of edge devices,intelligent processing modules or specialized AI chips areintegrated. These hardware components typically includegeneral computing modules like CPUs, GPUs, and FPGAs,along with customized AI processors tailored to specificdevice requirements. While general computing modules arewidely used for training and inference of AI models on edge

devices, customized AI processors are increasingly tailoredto specific edge applications and scenarios, with ongoingadvancements in technology and architecture.
5.4.2.2 Edge Intelligence ModelsMachine learning, particularly deep learning utilizingartificial neural networks [44], represents a potentapproach for practical AI applications. However, deployingdeep learning models at the edge is hindered by theircomplexity and computational demands.

(i) Model Partition: Deep learning models can bearchitecturally partitioned for deployment in edgecomputing environments using three mainarchitectures: independent deployment, collaborativedeployment among devices, and device‐servercollaboration. Independent deployment across multipledevices risks overloading individual edge devices.Collaborative architectures distribute portions of theneural network across multiple devices to optimizeperformance and resource utilization. Research in thisarea is nascent, necessitating further exploration andrefinement of partitioning strategies [58].(ii) Model Size Reduction: Given the inherentcomputational limitations of edge devices, modelsimplification techniques are crucial to enhanceprocessing efficiency. Methods such as weight pruningand data quantization are commonly employed. Weightpruning involves prioritizing neurons based on theircontributions and eliminating less‐impactful neurons toreduce model size [19]. Data quantization reducescomputational overhead by representing model inputsand outputs with fewer bits, thereby acceleratingoperations.

5.4.3 Integration with Vertical IndustriesIn cloud computing scenarios, users from various industriescan transmit their data to centralized cloud computingcenters, where IT professionals handle storage,management, and analysis tasks. This model allows ITprofessionals to focus on the data itself without needing in‐depth knowledge of the user's specific industry.However, in the context of edge computing, where edgedevices are closer to data producers, there is a muchtighter relationship with vertical industries. Designing andimplementing edge computing systems require significantdomain expertise. Vertical industries, eager to leverageedge technologies to enhance their competitiveness, oftenface a lack of specialized computing expertise. Therefore,IT professionals must collaborate closely with theseindustries to develop practical, deployable computingsystems. This collaboration involves addressing three keychallenges: bridging gaps with industry standards,enhancing data protection and access mechanisms, andimproving interoperability with existing systems.
5.4.3.1 Bridging the Gap with Industry StandardsDifferent industries have accumulated years of experienceand established standards that must be respected whendesigning edge computing systems. To minimize gaps,these systems need to align with these industry‐specificstandards. For instance, in the development of connectedand autonomous vehicles, successful implementationrequires expertise in intelligent algorithms, embeddedsystems, and automotive control, which necessitates closecooperation with traditional automotive manufacturers.Similarly, in sectors like manufacturing and industrial IoT,it is crucial to design edge computing systems that adhere

to industry standards to ensure successful integration anddeployment.
5.4.3.2 Enhancing Data Protection and Access
MechanismsIn edge computing, data is often stored on devices closer tothe data source, which provides a level of privacy but alsocreates challenges in terms of data sharing and access.Industries like healthcare and law enforcement, which dealwith highly sensitive information, may be reluctant toupload data to public clouds. Edge computing offers anadvantage by keeping data localized, thereby enhancingprivacy. However, this also leads to fragmented datastorage environments, complicating data sharing andaccess. It is crucial to develop unified, user‐friendly datasharing and access mechanisms that maintain privacy whileensuring the accessibility of data across the necessaryplatforms.
5.4.3.3 Improving InteroperabilityEdge computing systems must be designed to integrateseamlessly with existing industry systems, taking intoaccount the current landscape and existing technologies.For example, in video surveillance systems, although smartcameras with built‐in computing capabilities have becomemore common, there are still many traditional,nonintelligent cameras in use, generating vast amounts ofvideo data daily. Processing this data often involvesutilizing existing infrastructure, such as nearby stores orgas stations [57], which may not always have the necessarycomputing power on‐site. To address this, edge computingresearch should focus on how to deploy edge computingdevices effectively in such environments. Current solutionsoften involve building more data centers or deploying AI‐integrated devices, but these approaches can be costly and

may revert to a cloud‐centric model. Therefore, thechallenge lies in developing edge computing systems thatare both practical and interoperable with existingtechnologies, ensuring they can be seamlessly integratedinto the industry's current operations.To address this challenge, the Linux Foundation hasprovided an open‐source initiative, LF Edge [45], acomprehensive ecosystem for the development anddeployment of edge computing solutions across multipleindustries. It consists of various projects, such as EdgeXFoundry and Akraino edge stack, to offer modular, flexible,and scalable frameworks for integrating edge computinginto vertical industries like telecommunications, healthcare,and manufacturing.EdgeX Foundry is a highly flexible open‐source softwareframework designed to enable interoperability between IoTdevices and applications at the edge. EdgeX Foundryprovides a modular reference architecture for dataingestion, normalization, analysis, and sharing, which iscritical in environments like smart cities, retail, buildingautomation, and manufacturing. It supports a wide range ofprotocols (e.g., message queuing telemetry transport(MQTT), REST, and Bluetooth low energy (BLE)) and offersenhanced security features, making it a key tool instandardizing IoT frameworks across different marketverticals.Akraino edge stack provides a collection of open‐sourceblueprints tailored for building edge infrastructure across avariety of use cases, such as 5G, AI, and IoT. Theseblueprints are designed to address the unique challenges ofedge environments by focusing on low latency, highavailability, and scalability. Akraino supports multipleworkload types, including VMs, containers, andmicroservices, and offers zero‐touch provisioning and

automated lifecycle management, which are crucial forreducing operational complexity and costs in edgedeployments.By adopting LF Edge, organizations can leverage thesetools to address specific deployment challenges, ensuringseamless integration, enhanced security, and reducedcomplexity in managing edge infrastructure. LF Edge notonly accelerates the deployment of edge nodes but alsoenables the efficient use of AI models on resource‐constrained devices, thereby optimizing the overall edgecomputing architecture within industry‐specific contexts.
5.4.4 Hardware and Software SelectionEdge computing systems are characterized byfragmentation and heterogeneity. On the hardware front, avariety of computational units are utilized, including CPUs,GPUs, FPGAs, and ASICs. Even within the same category ofcomputational units, products can vary significantly in theircapabilities. For instance, NVIDIA's edge hardwareofferings include the highly capable Drive PX2 and themore modestly powered Jetson TX2.On the software side, particularly in the domain of deeplearning, numerous frameworks such as TensorFlow,PyTorch, are employed. Each combination of hardware andsoftware exhibits unique performance characteristicsacross different application scenarios.Taking image classification as an example, there arenumerous AI models with varying levels of computationalcomplexity and accuracy. Additionally, the diversity of edgehardware options, each with different computationalcapacities, further complicates the selection process. Thepresence of multiple computing frameworks, eachperforming differently on various edge hardware platforms,adds another layer of complexity. Consequently, identifying

the optimal combination of models, frameworks, andhardware involves significant deployment costs and trial‐and‐error, leading to a considerable challenge: developersoften face difficulties in selecting the appropriate hardwareand software products to meet their specific applicationrequirements.In making hardware and software selections, it is essentialto conduct a thorough analysis of the computationalrequirements of the application. This allows for theidentification of hardware that meets the necessarycomputational capacity. Additionally, selecting a suitablesoftware framework for development is crucial while alsoconsidering power consumption and cost constraints.Therefore, the design and implementation of tools capableof assisting users in analyzing the performance and powerconsumption of edge computing platforms and providinginformed recommendations for hardware and softwareselection is extremely important.
5.5 Foundations and Business ModelsUnderstanding the theoretical foundations and businessmodels behind edge computing is essential for grasping itsfull potential and impact. This section provides an overviewof the key theoretical concepts that underpin edgecomputing, from its architectural principles to its role indistributed systems. Additionally, we examine the emergingbusiness models that are shaping the edge computingmarket, offering insights into how this technology can driveeconomic value and transform industries.
5.5.1 Theoretical FoundationsBrewer et al. [5, 13] developed search engines anddistributed web caching, which led them to hypothesizeabout data consistency, service availability, and partition

tolerance. He presented this hypothesis at the 2000 PODCconference, and it was later proven and established as theCAP theorem (Consistency, Availability, and PartitionTolerance theorem) [16]. The CAP theorem is afundamental theory in distributed systems, particularly indistributed storage.Therefore, in the research of computer systems based onthe edge computing model, establishing a theoreticalfoundation for edge computing will be a critical challengefor both academia and industry. Edge computing is a highlyintegrative scientific research field, encompassingcomputing, data communication, storage, and energyoptimization. On one hand, edge computing theory can bebased on multiobjective optimization theory to achievecomprehensive optimization of computing, datacommunication, and energy consumption. On the otherhand, specific theoretical foundations can be established indifferent dimensions such as computing, datacommunication, storage, and energy optimization.For example, in the computing dimension, load balancingtheory for computing tasks can guide the allocation of tasksbetween cloud centers and edge nodes, maximizing theefficiency of computing resources. Similarly, based on loadbalancing and distributed system theory, datacommunication between the edge and the cloud can beoptimized to maximize network transmission bandwidth.Research on distributed multidimensional energyconsumption models for edge devices (such as usingmultidimensional Lyapunov theory) can establish energyefficiency models for multiple edge devices, optimizingenergy consumption and improving the utilization of limitedenergy resources. Additionally, reliability theories like theLyapunov reliability theory can be used to develop edgecomputing reliability theories based on multiple edgedevices.

The theoretical foundation of edge computing is not yetmature. It needs to integrate well‐established theoreticalfoundations from multiple disciplines, including computing,data communication, storage, and energy optimization, topropose comprehensive or multidimensional edgecomputing theories. Addressing this critical issue isessential for advancing research in edge computing. Asound theoretical foundation will provide significantguidance for academia and industry in future research anddevelopment of application services based on the edgecomputing model.
5.5.2 Business ModelsThe business model for cloud computing is relativelystraightforward. Users purchase services from relevantproviders based on their needs. Specifically, the cloudservices provided by cloud computing are an extension ofInternet‐related services, involving the provision ofdynamic, scalable, and virtualized resources over theInternet. Clients of cloud computing services can obtain thenecessary services on‐demand and in a scalable manner viathe network. These services can include informationtechnology (IT) infrastructure, software resources, andother Internet‐related resources or services. Cloudcomputing capabilities can also be traded as a service orcommodity over the Internet.Edge computing spans multiple fields, including IT andcommunication technology (CT), and involves variousindustry chain roles such as software and hardwareplatforms, network connectivity, data aggregation, chips,sensors, and industry applications. The business model foredge computing is not just service‐driven, where usersrequest specific services, but increasingly data‐driven. Forexample, the Firework model [43] suggests that each userrequest involves submitting a data request to the data

owner (stakeholder), after which the cloud center or edgedata owner processes and returns the results to the user.This shifts the traditional unidirectional business model ofcenter‐to‐user to a multilateral business model of user‐to‐center and user‐to‐user.The business model for edge computing depends onmultiple stakeholders involved in the model. A significantissue facing edge computing is how to integrate theexisting cloud computing business models to develop amultilateral business model for edge computing.
5.6 Summary and Practice
5.6.1 SummaryThis chapter addresses the critical technical challenges andpotential solutions in the realm of edge computing,highlighting the necessity for close collaboration amongresearchers and developers in computer systems,networks, and application services to tackle these issueseffectively. The discussed challenges is summarized inTable 5.1.

Table 5.1 Technical challenges in edge computing.
Challenges and
opportunities

Description

Programmability Challenges in developing anddeploying applications onheterogeneous edge nodes,requiring new programmingmodels.Automatic programpartitioning Partitioning applicationsefficiently across edge nodes,considering resources, energyconsumption, and responselatency.Naming conventions Developing efficient andstandardized naming mechanismsfor dynamic and heterogeneousedge environments.Data abstraction Preprocessing data at thegateway level, dealing with dataformat diversity, abstractionlevels, and reliability.Scheduling strategies Optimizing resource utilization,reducing latency, and enhancingtask processing performance inheterogeneous environments.Data offloading andload balancing Distributing data and tasks acrossmultiple devices to preventoverload, reduce latency, andimprove efficiency and reliability.Privacy protection andsecurity Protecting privacy and ensuringsecurity for data, sensors, edgenetworks, and platforms,including blockchain integration.

Challenges and
opportunities

Description

Optimization metrics Using metrics like latency,bandwidth, energy consumption,and cost to optimize loaddistribution across edge and cloudlayers.Hardware and softwareselection Selecting appropriate hardwareand software consideringcomputational requirements,performance, and powerconsumption.Integration withvertical industries Aligning edge systems withindustry standards, enhancingdata protection, and ensuringinteroperability with existingsystems.Edge nodes deployment Selecting optimal edge nodes tominimize communication delaysand computational overhead, andensuring reliability.Execution of AI modelson resource‐constrained edgedevices
Training and deploying AI modelson edge devices with limitedcomputing resources, enhancingperformance and reducinglatency.Edge servicemanagement Ensuring reliable and flexibleedge service management,handling dynamic andheterogeneous IoT devices andapplications.Theoretical foundations Establishing robust theoreticalfoundations for multiobjective

Challenges and
opportunities

Description

optimization in computing,communication, storage, andenergy.Business models Developing data‐driven businessmodels for edge computing,integrating existing cloud modelsand involving multiplestakeholders.The chapter begins by discussing programmability,emphasizing the challenges of deploying user applicationson heterogeneous edge nodes. It introduces newprogramming models, such as the Firework model, whichenables distributed data processing and computation flowsin edge computing environments. The importance ofautomatic program partitioning is also explained, focusingon distributing tasks efficiently across different edge nodeswhile considering resources, energy consumption, andresponse latency.Next, the chapter addresses the need for a standardizednaming mechanism in edge computing to manage deviceidentification and data communication. Solutions likehuman‐friendly naming conventions for smaller, fixed‐edgeenvironments are proposed. The complexities of dataabstraction are explored, with an emphasis onpreprocessing tasks at the gateway level and addressingchallenges related to data format diversity, abstractionlevels, and data reliability. The chapter also delves intooptimizing resource utilization and reducing latencythrough effective scheduling strategies tailored to theheterogeneous and dynamic nature of edge computingenvironments.

The necessity of data offloading to balance system load andprevent device overload is covered, with discussions onboth full and partial offloading techniques and theirrespective considerations. Then, the chapter introduces thetechnical challenges for managing edge services, ensuringa reliable and flexible edge computing system. Privacyprotection and security are highlighted as critical issues,including sensor security, securing edge networks andplatforms, and data sharing security, with proposedsolutions like edge‐based data processing and blockchainintegration.Various metrics for optimizing load distribution, such aslatency, bandwidth, energy consumption, and cost, areproposed to ensure efficient task allocation across the edgeand cloud layers. The chapter also discusses the challengesof selecting appropriate hardware and software for edgecomputing applications, emphasizing the need for tools toanalyze performance and power consumption. Itunderscores the importance of aligning edge computingsystems with industry standards, enhancing dataprotection, and improving interoperability with existingsystems.Practical challenges of selecting and deploying edge nodes,ensuring their reliability, and integrating them withexisting infrastructure are addressed. Techniques fordeploying AI models on edge devices are explored, focusingon enhancing computing power and simplifying AI modelsto overcome resource constraints.Finally, the chapter concludes by discussing the theoreticalfoundations and business models of edge computing. Itemphasizes the need for a robust theoretical framework toguide future research and development and explores theevolving business models driven by data‐centricapproaches in edge computing.

5.6.2 Practice Questions
1. How does edge caching contribute to reducing latencyin edge computing?2. Discuss the trade‐offs between security andperformance in edge computing.3. What are the challenges in implementing resourcemanagement in large‐scale edge computingenvironments?
5.6.3 Course Projects

1. Design a dynamic data management framework thatsupports real‐time data ingestion, processing, andretrieval at the edge. Use open‐source tools such asApache Kafka (https://kafka.apache.org/) for real‐timedata streaming, and Apache Cassandra(https://cassandra.apache.org) for distributed storageto build the framework. Evaluate the performance inhandling large‐scale data streams from IoT devices,focusing on latency, throughput, and data consistency.2. Explore resource allocation strategies in edge‐cloudenvironments and implement a resource allocationmechanism that dynamically balances workloadsbetween edge devices and the cloud, based on real‐timeconditions like network latency and device capabilities.Use simulation tools such as CloudSim(https://github.com/Cloudslab/cloudsim) or iFogSim(https://github.com/Cloudslab/iFogSim) to model theedge‐cloud environment and implement the resourceallocation mechanism. Evaluate the mechanism'seffectiveness by running simulations with varyingnetwork conditions, task complexities, and resourceconstraints.

https://kafka.apache.org/
https://cassandra.apache.org/
https://github.com/Cloudslab/cloudsim
https://github.com/Cloudslab/iFogSim

3. Design a privacy‐preserving mechanism suitable for anedge computing scenario, such as secure dataprocessing in healthcare. Implement the proposedmechanism using open‐source frameworks like EdgeXFoundry or Open Horizon(https://lfedge.org/projects/open-horizon/), focusing onencryption, data anonymization, or secure datatransmission. Simulate potential security threats andassess the effectiveness of the proposed mechanism.4. Explore the integration of edge computing with existingsoftware and hardware solutions in a specific industry(e.g., manufacturing, healthcare, and 5G) and develop aprototype that demonstrates this integration. Use open‐source frameworks like EdgeX Foundry(https://lfedge.org/projects/edgex-foundry/) tointegrate edge computing with selected software andhardware solutions.

https://lfedge.org/projects/open-horizon/
https://lfedge.org/projects/edgex-foundry/

Chapter 5 Suggested Papers
 1 Sumit Maheshwari et al. “Scalability and performanceevaluation of edge cloud systems for latency constrainedapplications”. In: 2018 IEEE/ACM Symposium on Edge

Computing (SEC). IEEE. 2018, pp. 286–299. 2 Lanyu Xu, Arun Iyengar, and Weisong Shi. “CHA: Acaching framework for home‐based voice assistantsystems”. In: 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE. 2020, pp. 293–306. 3 Lanyu Xu, Arun Iyengar, and Weisong Shi. “ChatCache:A hierarchical semantic redundancy cache system forconversational services at edge”. In: 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD).IEEE. 2021, pp. 85–95.

References 1 Brian Amento et al. “FocusStack: Orchestrating edgeclouds using location‐based focus of attention”. In: 2016
IEEE/ACM Symposium on Edge Computing (SEC). IEEE.2016, pp. 179–191. 2 AWS. AWS for the Edge. https://aws.amazon.com/edge/.Accessed: 2024‐08‐05. 2024. 3 Tayebeh Bahreini and Daniel Grosu. “Efficient placementof multi‐component applications in edge computingsystems”. In: Proceedings of the 2nd ACM/IEEE
Symposium on Edge Computing. 2017, pp. 1–11. 4 Ketan Bhardwaj, Joaquin Chung Miranda, and AdaGavrilovska. “Towards IoT‐DDoS prevention using edge

https://aws.amazon.com/edge/

computing”. In: USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 18). 2018. 5 Eric A Brewer. “Towards robust distributed systems”. In:
PODC. Vol. 7. 10.1145. Portland, OR. 2000, pp. 343–477. 6 Jie Cao et al. “A framework for component selection incollaborative sensing application development”. In: 10th
IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing.IEEE. 2014, pp. 104–113. 7 Shiwei Cao et al. “An energy‐optimal offloadingalgorithm of mobile computing based on HetNets”. In:
2015 International Conference on Connected Vehicles
and Expo (ICCVE). IEEE. 2015, pp. 254–258. 8 Byung‐Gon Chun et al. “CloneCloud: Elastic executionbetween mobile device and cloud”. In: Proceedings of the
6th Conference on Computer Systems. 2011, pp. 301–314. 9 Francis DaCosta and Byron Henderson. Rethinking the
Internet of Things: a scalable approach to connecting
everything. Springer Nature, 2013.

10 Jeffrey Dean and Sanjay Ghemawat. “MapReduce:Simplified data processing on large clusters”. In:
Communications of the ACM 51. 1 (2008), pp. 107–113.

11 Joachim Feld. “PROFINET‐scalable factorycommunication for all applications”. In: IEEE
International Workshop on Factory Communication
Systems, 2004. Proceedings. IEEE. 2004, pp. 33–38.

12 Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren.“The program dependence graph and its use in

optimization”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 9. 3 (1987), pp. 319–349.

13 Armando Fox and Eric A Brewer. “Harvest, yield, andscalable tolerant systems”. In: Proceedings of the 7th
Workshop on Hot Topics in Operating Systems. IEEE.1999, pp. 174–178.

14 Michael Frey et al. “Security for the industrial IoT: Thecase for information‐centric networking”. In: 2019 IEEE
5th World Forum on Internet of Things (WF‐IoT). IEEE.2019, pp. 424–429.

15 Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Arewe ready for autonomous driving? The KITTI visionbenchmark suite”. In: 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE. 2012,pp. 3354–3361.

16 Seth Gilbert and Nancy Lynch. “Brewer's conjectureand the feasibility of consistent, available, partition‐tolerant web services”. In: ACM Sigact News 33. 2(2002), pp. 51–59.
17 Google Cloud. Google Distributed Cloud.https://cloud.google.com/distributed-cloud/edge/latest/docs. Accessed: 2024‐08‐26. 2024.
18 Kiryong Ha and Mahadev Satyanarayanan.“Openstack++ for cloudlet deployment”. In: School of

Computer Science Carnegie Mellon University
Pittsburgh 2014 (2015).

19 Song Han et al. “Learning both weights and connectionsfor efficient neural network”. In: Advances in Neural
Information Processing Systems 28 (2015).

https://cloud.google.com/distributed-cloud/edge/latest/docs

20 Rigas Themistoklis Ioannides, Thomas Pany, and GlenGibbons. “Known vulnerabilities of global navigationsatellite systems, status, and potential mitigationtechniques”. In: Proceedings of the IEEE 104. 6 (2016),pp. 1174–1194.
21 Keith R Jackson et al. “Performance analysis of highperformance computing applications on the amazon webservices cloud”. In: 2010 IEEE 2nd International

Conference on Cloud Computing Technology and
Science. IEEE. 2010, pp. 159–168.

22 Van Jacobson et al. Named data networking (NDN)
project 2012‐2013 annual report. Tech. rep. Citeseer,2013.

23 Mohammad Jbair et al. “Industrial cyber physicalsystems: A survey for control‐engineering tools”. In:
2018 IEEE Industrial Cyber‐Physical Systems (ICPS).IEEE. 2018, pp. 270–276.

24 Mohamed Kamoun, Wael Labidi, and Mireille Sarkiss.“Joint resource allocation and offloading strategies incloud enabled cellular networks”. In: 2015 IEEE
International Conference on Communications (ICC).IEEE. 2015, pp. 5529–5534.

25 Jiawen Kang et al. “Blockchain for secure and efficientdata sharing in vehicular edge computing and networks”.In: IEEE Internet of Things Journal 6. 3 (2018), pp.4660–4670.
26 Dong Li et al. “KLRA: A kernel level resource auditingtool for IoT operating system security”. In: 2018

IEEE/ACM Symposium on Edge Computing (SEC). IEEE.2018, pp. 427–432.

27 Juan Liu et al. “Delay‐optimal computation taskscheduling for mobile‐edge computing systems”. In: 2016
IEEE International Symposium on Information Theory
(ISIT). IEEE. 2016, pp. 1451–1455.

28 Shaoshan Liu et al. “Computer architectures forautonomous driving”. In: Computer 50. 8 (2017), pp. 18–25.
29 Sidi Lu et al. “EdgeWare: Toward extensible and flexiblemiddleware for connected vehicle services”. In: CCF

Transactions on High Performance Computing 4. 3(2022), pp. 339–356.
30 Quyuan Luo et al. “Minimizing the delay and cost ofcomputation offloading for vehicular edge computing”.In: IEEE Transactions on Services Computing 15. 5(2021), pp. 2897–2909.
31 Pavel Mach and Zdenek Becvar. “Mobile edgecomputing: A survey on architecture and computationoffloading”. In: IEEE Communications Surveys &

Tutorials 19. 3 (2017), pp. 1628–1656.
32 Microsoft Azure. Azure Stack Edge.https://azure.microsoft.com/en-us/products/azure-stack/edge. Accessed: 2024‐08‐05. 2024.
33 Olga Muñoz, Antonio Pascual‐Iserte, and Josep Vidal.“Joint allocation of radio and computational resources inwireless application offloading”. In: 2013 Future

Network & Mobile Summit. IEEE. 2013, pp. 1–10.
34 Zhenyu Ning et al. “Preliminary study of trustedexecution environments on heterogeneous edgeplatforms”. In: 2018 IEEE/ACM Symposium on Edge

Computing (SEC). IEEE. 2018, pp. 421–426.

https://azure.microsoft.com/en-us/products/azure-stack/edge

35 Jonathan Petit and Steven E Shladover. “Potentialcyberattacks on automated vehicles”. In: IEEE
Transactions on Intelligent Transportation Systems 16. 2(2014), pp. 546–556.

36 Jonathan Petit et al. “Remote attacks on automatedvehicles sensors: Experiments on camera and LiDAR”. In:
Black Hat Europe 11. 2015 (2015), p. 995.

37 Deepak Puthal et al. “Secure and sustainable loadbalancing of edge data centers in fog computing”. In:
IEEE Communications Magazine 56. 5 (2018), pp. 60–65.

38 Tie Qiu et al. “SIGMM: A novel machine learningalgorithm for spammer identification in industrial mobilecloud computing”. In: IEEE Transactions on Industrial
Informatics 15. 4 (2018), pp. 2349–2359.

39 Tie Qiu et al. “Edge computing in industrial Internet ofThings: Architecture, advances and challenges”. In: IEEE
Communications Surveys & Tutorials 22. 4 (2020), pp.2462–2488.

40 Dipankar Raychaudhuri, Kiran Nagaraja, and ArunVenkataramani. “MobilityFirst: A robust and trustworthymobility‐centric architecture for the future internet”. In:
ACM SIGMOBILE Mobile Computing and
Communications Review 16. 3 (2012), pp. 2–13.

41 Hooman Peiro Sajjad et al. “SpanEdge: Towardsunifying stream processing over central and near‐the‐edge data centers”. In: 2016 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE. 2016, pp. 168–178.

42 Mahadev Satyanarayanan et al. “The case for VM‐basedcloudlets in mobile computing”. In: IEEE Pervasive
Computing 8. 4 (2009), pp. 14–23.

43 Weisong Shi et al. “Edge computing: Vision andchallenges”. In: IEEE Internet of Things Journal 3. 5(2016), pp. 637–646.
44 Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal.“Introduction to multi‐layer feed‐forward neuralnetworks”. In: Chemometrics and Intelligent Laboratory

Systems 39. 1 (1997), pp. 43–62.
45 The Linux Foundation. LF Edge: Building an Open

Source Framework for the Edge. https://lfedge.org/.Accessed: 2024‐08‐30. 2024.
46 Khai N Truong et al. “Preventing camera recording bydesigning a capture‐resistant environment”. In: UbiComp

2005: Ubiquitous Computing: 7th International
Conference, UbiComp 2005, Tokyo, Japan, September
11–14, 2005. Proceedings 7. Springer. 2005, pp. 73–86.

47 Yuxin Wang et al. “Quantitative analysis of storagerequirement for autonomous vehicles”. In: Proceedings
of the 16th ACM Workshop on Hot Topics in Storage and
File Systems. 2024, pp. 71–78.

48 Lanyu Xu, Arun Iyengar, and Weisong Shi. “ChatCache:A hierarchical semantic redundancy cache system forconversational services at edge”. In: 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD).IEEE. 2021, pp. 85–95.

49 Kaiping Xue et al. “Fog‐aided verifiable privacypreserving access control for latency‐sensitive datasharing in vehicular cloud computing”. In: IEEE Network32. 3 (2018), pp. 7–13.
50 Chen Yan, Wenyuan Xu, and Jianhao Liu. “Can you trustautonomous vehicles: Contactless attacks against

https://lfedge.org/

sensors of self‐driving vehicle”. In: Def Con 24. 8 (2016),p. 109.
51 Shanhe Yi, Zhengrui Qin, and Qun Li. “Security andprivacy issues of fog computing: A survey”. In: Wireless

Algorithms, Systems, and Applications: 10th
International Conference, WASA 2015, Qufu, China,
August 10–12, 2015, Proceedings 10. Springer. 2015, pp.685–695.

52 Shanhe Yi et al. “LAVEA: Latency‐aware video analyticson edge computing platform”. In: Proceedings of the 2nd
ACM/IEEE Symposium on Edge Computing. 2017, pp. 1–13.

53 Matei Zaharia et al. “Spark: Cluster computing withworking sets”. In: 2nd USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 10). 2010.

54 Lixia Zhang et al. “Named data networking”. In: ACM
SIGCOMM Computer Communication Review 44. 3(2014), pp. 66–73.

55 Quan Zhang et al. “Firework: Big data sharing andprocessing in collaborative edge environment”. In: 2016
4th IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE. 2016, pp. 20–25.

56 Quan Zhang et al. “Firework: Data processing andsharing for hybrid cloud‐edge analytics”. In: IEEE
Transactions on Parallel and Distributed Systems 29. 9(2018), pp. 2004–2017.

57 Qingyang Zhang et al. “Edge video analytics for publicsafety: A review”. In: Proceedings of the IEEE 107. 8(2019), pp. 1675–1696.

58 Zhi Zhou et al. “Edge intelligence: Paving the last mileof artificial intelligence with edge computing”. In:
Proceedings of the IEEE 107. 8 (2019), pp. 1738–1762.

Note* This chapter is contributed by Sidi Lu.

6
Future Trends and Emerging
Technologies*
As technology evolves, new innovations continue toemerge. The combination of edge computing with emergingtechnologies and the enhancement of edge computingpower in new scenarios have brought significant changes topeople's lives. This chapter introduces several computingparadigms that have been proposed in recent years,comparing and analyzing their similarities and differences.Furthermore, it explores the applications of edgecomputing technology in several typical scenarios andpresents some research directions worth furtherexploration in these areas.
6.1 Edge Computing and New
ParadigmThe core concept of edge computing is relativelystraightforward: pushing or pulling computing from adevice or cloud to an edge. In this case, the computing taskwill be divided into different entities, that is, device, edge,and cloud, thus forming the computing path [49]. In recentyears, some computing paradigms have been proposed andemerged, such as sky computing [31], computing powernetwork [33], and meta computing [5], which have gainedprominence in various fields. This chapter primarily focuseson clarifying the relationship between these newly emergedcomputing paradigms and edge computing, while alsodescribing the research progress of edge computing acrossvarious verticals.

6.1.1 Related New ParadigmsIn recent years, with the development of edge computing, aseries of new computing paradigms have graduallyemerged. Following their introduction in chronologicalorder, some of the more typical ones are cloud‐edge‐devicecollaboration, sky computing [31], computing powernetwork [33], and meta computing [5]. Cloud‐edge‐devicecollaboration has been mentioned since the inception ofedge computing. For instance, in our work Firework [49],the concept of the cloud‐edge collaboration was alreadyused to describe this concept. This paradigm is essentiallya concrete manifestation of edge computing. Similarly,concepts like edge intelligence, which were mentionedearlier, are also specific applications of edge computing.Sky computing and meta computing, are new computingparadigms that have been proposed in recent years. Theseparadigms were developed after observing certainlimitations of edge computing, leading to proposedimprovements. However, they can still be regarded asextensions of edge computing, with added features. Forexample, sky computing extends from the cloud'sperspective, while meta computing extends from theperspective of cross‐service providers and security.Computing power network, primarily proposed to integratethe computational power of both the cloud and the edge,providing a unified, accessible, and seamless computinginfrastructure for end devices.As John McCarthy predicted about the future of computingin 1961, “Computing may someday be organized as a publicutility just as the telephone system is a public utility. Eachsubscriber needs to pay only for the capacity he actuallyuses, but he has access to all programming languagescharacteristic of a very large system …Certain subscribersmight offer service to other subscribers …The computer

utility could become the basis of a new and importantindustry.” In Sections 6.1.1.1-6.1.1.3, we will brieflyintroduce sky computing and meta computing.
6.1.1.1 Sky ComputingSky computing was proposed by Ion Stoica and ScottShenker from UC Berkeley in 2021 in their paper “FromCloud Computing to Sky Computing” published at HotOS[31]. Unlike the well‐known cloud computing, skycomputing is seen as the future of cloud computing. Itenvisions a sky filled with many clouds and aims to solvethe problem of cross‐cloud integration, breaking down thebarriers between different cloud platforms and maximizingthe use of cross‐cloud data. Therefore, in sky computing,the authors designed a two‐layer architecture consisting ofa compatibility layer and an intercloud layer as shown inFigure 6.1.

Figure 6.1 Possible sky computing architecture.Source: Stoica and Shenker [31]/ACM, Inc.
Compatibility layer: In cloud computing, differentcloud platforms may adopt different architectures andprovide distinct application programming interfaces(APIs). Similar to how traditional operating systemsabstract away the differences in hardwarefunctionality, the compatibility layer in sky computingis designed to mask the differences in cloud platforms'implementations. By abstracting various APIs, itprovides a unified interface to facilitate applicationdevelopment. Fortunately, thanks to existing unifiedinterfaces in traditional technologies, such as RESTfulAPIs for network access, S3 protocols for data storage,and Docker or virtual machines for runtimeenvironments, the implementation of the compatibilitylayer mainly focuses on managing the integration ofdifferent cloud service providers' APIs.

Intercloud layer: The intercloud layer is built on topof the compatibility layer and is primarily responsiblefor providing services to users. It allows users to uploadapplications and policies. Once the intercloud layerreceives a user's request, it will enforce the policyspecified by the user to determine where theapplication should run—whether in a specific locationor freely scheduled based on circumstances. Then, theintercloud layer calls the compatibility layer to sendrequests to the designated cloud service providers forcontainer pulling, launching, and, after the task iscomplete, for destroying the container or virtualmachine. Naturally, the policy can also includeadditional constraints, such as cost, task completiontime, and more.
From the above functionality overview, it is clear that skycomputing essentially abstracts away the differencesbetween clouds through the compatibility layer, creating aunified interface for the intercloud layer to invoke. Theintercloud layer, in turn, provides an interface for users,allowing them to run applications without needing to knowwhich cloud provider their application is operating on.Users only need to specify constraints, such as runtime,capacity, and cost, and the intercloud layer willautomatically find the optimal cloud service provider todeliver the service.To implement these functions, the sky computing team hasproposed several related projects, such as SkyPilot [45]and Skyplane [14]. SkyPilot [45] can be considered the firstattempt at sky computing. SkyPilot is a framework forrunning large language models (LLMs), artificialintelligence (AI), and batch jobs on any cloud, offeringmaximum cost savings, the highest GPU availability, andmanaged execution. Skyplane [14], on the other hand,

addresses the issue of cross‐cloud data transfer, providinga system for bulk data transfers between cloud objectstores. It uses cloud‐aware network overlays to optimallybalance price and performance.Additionally, while computing can be deployed andexecuted at relatively low costs, the execution of servicesgenerates vast amounts of data. Migrating this data withthe service incurs significant costs. In other words, cloudobject stores offer vastly different price points for objectstorage based on workload and geography. To address thisissue, the authors of sky computing also proposedSkyPIE [1], a solution for managing the placement of dataobjects during cross‐cloud computing.
6.1.1.2 Computing Power NetworkCurrently, there is no unified definition for computingpower network. The concept was broadly introducedaround 2019 as a key infrastructure for computationpower, and it can be seen as an evolution of gridcomputing. The initial goal of a computing power networkis to package computation power and deliver it to theplaces where users need it, much like how electricity istransmitted in a power grid [33, 47]. Although it is still inits early stages of development, different individuals,organizations, etc., provide different explanations for it.Just as with edge computing, most people believe thatstoring data at the edge and pushing computing power tothe edge constitutes edge computing. Similarly, computingpower networks have different interpretations dependingon perspective.For example, from the perspective of data centers, thecomputing power network could be divided into four stagesaccording to maturity: (1) Applications submit tasks anddata to a single data center, which then executes them and

returns the results. (2) For homogeneous data, applicationscan be submitted to multiple homogeneous data centers,and the network scheduler eventually dispatches them to asingle data center for execution. (3) Applications can runacross multiple homogeneous data centers or be submittedto heterogeneous data centers but are ultimatelydispatched to a single data center for execution. (4) Similarto the power grid, users only need to submit theirapplication requirements, and the network schedulercoordinates heterogeneous resources to perform thecomputations. Applications can run simultaneously inheterogeneous data centers and deliver results.From a broader perspective, a computing power networkaims to connect the computing power currently distributedacross cloud computing, edge layers, and device layers intoa pooled resource using a network. This would allow usersto utilize computing power as needed. From thisstandpoint, computing power networks can be viewed as afurther evolution of edge computing, integrating efficientcollaboration across cloud, edge, and device layers.However, as previously mentioned, the development ofcomputing power networks is still in its infancy, and itsprimary drivers are currently large enterprises, particularlythose that control data centers and cloud computingcenters.From a broader perspective, a computing power networkaims to connect the computing power currently distributedacross cloud computing, edge layers, and device layers intoa pooled resource using a network. This would allow usersto utilize computing power as needed. From thisstandpoint, computing power networks can be viewed as afurther evolution of edge computing, integrating efficientcollaboration across cloud, edge, and device layers.However, as previously mentioned, the development ofcomputing power networks is still in its infancy, and its

primary drivers are currently large enterprises, particularlythose that control data centers and cloud computingcenters.At present, the main focus of computing power networks isstill on interconnecting cloud computing, similar to whatsky computing is doing. The true integration of computingpower across the entire network is still under research anddevelopment.
6.1.1.3 Meta ComputingMeta computing is a new computing paradigm proposed byCheng et al. [5]. As one of the earlier scholars involved inthe research of edge computing, Cheng et al. believe thatthe current computing paradigms are inadequate.Presently, the edge computing environment tends to beisolated, with edge computing nodes still belonging to thesame service provider. There is a lack of interoperabilityand mutual trust between service providers, preventingtrue collaboration between nodes, as shown in Figure 6.2.Moreover, when there are not many users, maintaining anedge node is actually quite costly, leading to limitedresources, service capabilities, and coverage in edgecomputing.

Figure 6.2 Problems of existing computing paradigms. Source: Cheng et al. [5]/IEEE.Although cloud computing and computing power networkshave attempted to address some of these issues—such assky computing, which enables cross‐cloud interoperabilitythrough the compatibility layer and intercloud layer—theseparadigms primarily focus on the cloud side. The edge sideis still not fully considered. Meta computing was introducedspecifically to solve this problem of cross‐domaincollaboration. The authors presented a vision for metacomputing, aiming to achieve “for any person or task, theentire network functions as a single computer.” This isreferred to as “network‐as‐a‐computer (NaaC),” and theresulting entity is termed a “meta‐computer.”

Since computing power barriers across different serviceproviders, security becomes a critical issue. Thus, theauthors proposed an architecture design consisting of twocore modules as shown in Figure 6.3: the zero trustcomputing manager module and the device managermodule. The device manager module aims to unify differentcomputational resources. In the zero trust computingmanager module, there are components such as theidentity and access manager, the resource scheduler, thetask manager, and a settlement and incentive system.

Figure 6.3 Problems of existing computing paradigms. Source: Cheng et al. [5]/IEEE.Compared to traditional computing paradigms, the zero‐trust‐based module is something not found in othercomputing paradigms. Therefore, we will focus onintroducing the functions of these modules. The identityand access manager is used for rigorous identityverification of nodes (including users and devices), therebycreating a zero‐trust network and computing environment,

while supporting fine‐grained management of data accesspermissions and resource usage. The zero‐trust computingmanager is responsible for building a distributed ledger,which ensures state consistency in distributed computingtasks through the use of the distributed ledger.
6.1.2 What Is New for Edge ComputingAlthough some new computing paradigms have beenintroduced in recent years, they can still be regarded asextensions of edge computing. Table 6.1 summarizes thecharacteristics of the aforementioned new paradigms andtheir relationship to edge computing. It should be notedthat the edge computing referred to in this book follows thecomputing path described in edge computing and Firework,involving the device, edge, and cloud layers.
Table 6.1 Relationship of different computing paradigms toedge computing.
Name Features Relationship to

edge computingSky computing Cross‐cloudcollaboration Cloud extensions
Computingpower network Data center andedge integration Cloud and edgeextensionsMetacomputing Cross‐serviceprovidercollaboration

Cross‐domainsecurity extensions
If we only consider their goals, it may seem that only metacomputing is related to edge computing, or that only metacomputing can be considered an extension of edgecomputing. However, when we take into account thecomputing path concept that we proposed earlier, itbecomes clear that the cloud is also multifaceted. In

Firework, the concept of different holders was mentioned,meaning that the edge and cloud can belong to differentservice providers. Therefore, if we integrate sky computingand computing power network with edge computing, theyboth significantly enhance the capabilities of edgecomputing, as follows:
Sky computing: By connecting different clouds, skycomputing enables data from devices to securely andquickly select appropriate compute nodes in aheterogeneous multi‐cloud environment, therebyenhancing the collaborative capabilities of edgecomputing.
Computing power network: Similar to skycomputing, computing power networks can achievecomparable functionalities. Additionally, the computingpower network plans to incorporate the computingpower of the edge layer in the future, effectivelymerging the edge layer and cloud layer into a unifiednetwork. Therefore, the computing power network canbe viewed as an enhancement to edge computing fromboth the cloud and edge layers.
Meta computing: When meta computing wasproposed, it directly addressed one of the key issues incurrent edge computing—cross‐domain collaboration.Therefore, when meta computing is fully realized, iteffectively becomes a more secure implementation ofedge computing. In other words, it can be consideredan enhancement to edge computing from a securityperspective.

From the above analysis, and as the proposers of metacomputing have pointed out, edge computing has showncertain limitations, especially from a security perspective,in terms of its computing paradigm. The current

implementation of edge computing is not yet the completeform of what we advocated for in our previous papers. Thecommon practice today is simply to push computing tasksto the edge and label it as edge computing. However, theconcept of the computing path has not been fullyconsidered. Particularly, most edge computing solutionsare confined to a single service provider, and achievingcross‐service provider edge computing remains challengingdue to the lack of unified tools.
6.1.3 FutureWhether it is sky computing, computing power network, ormeta computing, all have recognized this issue and aim toenhance the computing paradigm from the perspective ofheterogeneous, cross‐service provider collaboration.Similarly, the realization of our proposed computing pathalso requires such cross‐domain collaboration to fullyunlock the potential of edge computing. Therefore, as amajor trend for the future, we recommend enhancing cross‐domain collaboration capabilities across the cloud, edge,and device layers.
6.2 Integration with Artificial
IntelligenceIn recent years, with the rise of ChatGPT, large languagemodels have gradually gained attention. Edge computing,on the other hand, enables devices to harness intelligencemore effectively, empowering them with greatercapabilities. This section discusses the relationshipbetween artificial intelligence and edge computing,highlighting several roles edge computing plays in thetraining, inference, and caching of large language models.Finally, it explores future applications of edge intelligenceand addresses the challenges that currently exist.

6.2.1 Basic Overview and Why Need Edge
ComputingA LLM is a type of language model that, compared totraditional models like MobileNet, typically refers toartificial neural networks with billions or even moreparameters. Table 6.2 shows the parameter counts of someexisting large language models, and these numbers are stillgrowing. LLMs are general‐purpose models that performwell across a wide range of tasks, rather than being trainedfor a single specific task (such as sentiment analysis,named entity recognition, or mathematical reasoning).
Table 6.2 Model parameter scales.
Name R&D team Parameter

scaleGPT‐1 OpenAI 0.11 BGPT‐3 OpenAI 175 BGPT‐4 OpenAI 1.8 TSora OpenAI 7 BGemini 1.5 pro Google 175 BGemma‐2B(opensource) Google 2 B
Gemma‐7B(opensource) Google 7 B
StableDiffusion Qualcomm 65 BLLaMA (opensource) Meta 7–65 BChatGLM(opensource) TsinghuaUniversity 6–130 B
Hunyuan Tencent 100 BERNIE Bot Baidu 260 B

It is precisely due to their massive number of parametersthat LLMs can capture much of the syntax and semantics ofhuman language and retain a large amount of factualinformation from their training. The most successful largelanguage model to date is the ChatGPT series developed byOpenAI, which is commonly used for tasks such as textgeneration, content summarization, sentiment analysis,language translation, and code generation. Additionally,large language models can be customized using techniqueslike prompting or fine‐tuning to generate outputs thatbetter align with user requirements. There are also domain‐specific large language models, such as Microsoft's Copilot,which can analyze code and assist in programming basedon user requests.The rise of large models is inseparable from advancementsin hardware computing capabilities and the expansion ofdatasets. At the same time, their training, inference, andother processes require massive amounts of resources. Asshown in Table 6.2, the parameter count of GPT(generative pre‐trained transformer) models grew from 110million in GPT‐1 to 175 billion in GPT‐3. Aftercommercialization, the latest GPT‐4 expanded tenfold to 1.8trillion parameters. Training such a massive modelrequired OpenAI to use 25,000 A100 GPUs over 90–100days, with a single training run potentially costing up toUS$ 63 million.Currently, most large language models are run in thecloud, with only a few capable of operating on high‐performance PCs, such as various customized models witharound 6 billion parameters. However, to enable betterexecution on various Internet of Things (IoT) devices orpersonal portable devices, the models are usually furthercompressed. For example, Google launched Gemini Nanoon the Pixel 8 Pro smartphone, with models having 1.8billion and 3.25 billion parameters. Qualcomm plans to

introduce LLaMA 2 support for flagship smartphones andpersonal computers powered by Snapdragon chips. Applealso released its own large models in 2024. Apple'sOpenELM models come in various sizes, with parametercounts of 270 million, 450 million, 1.1 billion, and 3 billion.Although these LLMs, with hundreds of millions or billionsof parameters, are designed for smart terminals, deployingLLMs on‐device remains a significant challenge. However,on‐device LLMs can greatly enhance the intelligence ofdevices, enabling them to provide smarter and moreefficient services. Only when all IoT devices exhibit acertain degree of intelligence—whether by becomingintelligent themselves or by collaborating with otherdevices—can the vision of a fully interconnected intelligentworld be realized.Edge computing plays a critical role in empoweringterminal devices by utilizing edge devices and cloudservices. It holds great promise in supporting thedevelopment of large language models, but there are stillmany challenges ahead. Specifically:
Smartphones are not the only part of the Internet ofEverything. In the context of the Internet of Everything,devices within the IoT, cyber‐physical systems, andsimilar environments are all connected to the Internet,communicating with each other to completepredetermined tasks. In this scenario, smartphones arejust one of the many terminals within the IoE, and theyare relatively high‐performance devices. However,there are many IoT devices with limited resources,which cannot be equipped with high‐performancecomputing units like smartphones.Devices and demands are heterogeneous. The terminaldevices in edge computing include a large number of

heterogeneous devices. Even among smartphones, theirperformance varies, and not all smartphones canhandle LLMs. In such a heterogeneous environment,collaborative computing in edge computing needs todynamically adjust based on heterogeneous computingrequirements, network demands, latency needs, andmore to ensure the availability of LLMs.Security and privacy is a big issue. LLMs are trained onvast amounts of data, much of which is user‐generated.One of the benefits of edge computing is that raw dataremains local and is only shared after processing, thusmitigating privacy concerns. On‐device LLM inferenceeliminates privacy breaches and reduces the need forInternet connectivity. However, since LLMs requiresubstantial computational power, memory, and energyresources, the challenge lies in how to leverage edgecomputing technology to accelerate inference andlearning of LLMs on the device side.
6.2.2 Integrating LLM with Edge ComputingEdge computing can be seen as a computational paradigmthat integrates computing power. When combined withlarge language models, it can provide benefits in variousaspects such as model training, inference, and fine‐tuningby leveraging the integration of edge computing.
6.2.2.1 Training with Edge ComputingTraining large language models requires vast amounts ofdata to achieve accurate results. These data may containsignificant amounts of user privacy, making on‐devicelearning or fine‐tuning the most ideal approach from aprivacy perspective. However, large language models haveextremely high computational requirements. According toreports, GPT‐4 requires approximately 560 trillion floating‐

point operations for each forward pass to generate a singletoken. However, advanced A100 GPUs offer only 19.5trillion floating‐point operations per second. This meansthat with a single A100 GPU, GPT‐4 would require around28 seconds for each forward pass to generate a token.Moreover, backward propagation typically demands evenmore computational resources than forward passes.Given that large language models have only been proposedand gained attention in recent years, and since theirtraining typically requires large‐scale GPU clusters withtens of thousands of GPUs to achieve optimal results, therehas been relatively little research on training models at theedge or device level. This remains an open question andposes a significant challenge. In subsequent text, we willpresent some hypotheses about the integration of largelanguage models and edge computing, along with some ofthe work done by scholars in this area.
Centralized Edge Learning In early studies, mostresearchers referred to computations carried out on edgedevices as edge computing. In this case, it only involvesoffloading the training tasks to edge servers, while devicesdo not participate in the training process. All data isuploaded to the edge server for training. Currently, someresearch is exploring this approach for LLM development.For example, Narayanan et al. [25] have conducted studiesin this area. They leverage distributed GPUs at the edge totrain LLMs. However, this approach is not applicable tomost edge nodes. Currently, research in this field remainsrelatively scarce due to the high resource demands of LLMtraining, which a single edge device is unable to support.We also note that fine‐tuning consumes less than trainingthe entire model, so might we not consider placing the fine‐tuning at the edges to construct models that are more

suited to edge‐specific environments? This is an open‐ended question.
Distributed Edge Learning This approach leverages thedistributed nature of edge computing, coupling the modellearning process with distributed computation, allowingdifferent devices to train the same model. In this setup,federated learning and split learning can be integrated withedge computing in LLM training. The main differencebetween the two is that in federated learning, the model isnot split, meaning all participants train the same model,leading to larger parameter transmission. In split learning,the large language model is divided into smallersubmodels, and different devices focus on training specificparts of the model. Eventually, these submodels areaggregated into a single model in the cloud. Compared tocentralized edge learning, research on distributed edgelearning is more extensive. This is mainly because theresource demands of large language model training are toohigh for most edge nodes to handle the significantcomputational load.In the field of federated edge learning, Wang et al. [38]proposed a cloud‐device collaborative learning frameworkfor multimodal large language models. This frameworkemploys a token sampling strategy to filter out someirrelevant tokens, reducing transmission costs andimproving training efficiency. It also uses adapter‐basedknowledge distillation to distill the large language modelinto smaller models that are easier to deploy on edgedevices. During model downloading or updating, it adopts adynamic weight update compression strategy to reducetransmission costs and balance the differences betweencloud and edge models. This framework can also be appliedin cloud‐edge collaborative environments.

Furthermore, some work places the training in the cloudwhile allowing fine‐tuning to take place at the edge or ondevices, which is a promising approach. Additionally, in thecontext of split learning, Lin et al. [20] proposed anefficient parallel split learning scheme. Looking ahead,particularly in combination with large models, splitlearning may represent a more viable training paradigmbecause it enables training sub‐models on devices andintegrates the complete model in the cloud.
6.2.2.2 Inferring with Edge ComputingCompared to training, the inference of LLMs consumesslightly fewer computational resources [42]. However, it isstill difficult to directly apply LLMs to end devices withoutleveraging edge computing for support. For the LLMsthemselves, numerous techniques have been developed toreduce the costs associated with computation andcommunication. Common compression techniques such aspruning, quantization, and knowledge distillation arefrequently employed. For example, through INT4quantization, Google's Gemini Nano models, with 1.8 billionand 3.25 billion parameters, can run on the Pixel 8 Pro.Similarly, Gemma 2B, after INT4 quantization, can bedeployed on iOS devices. Apple also released its LLMs in2024. The OpenELM models from Apple are available invarious sizes, with parameter counts of 270 million, 450million, 1.1 billion, and 3 billion.Although these quantization techniques help, LLMs stillstruggle to be deployed on other edge devices due to thearound 10 GB memory requirements and second‐levellatency involved in computations. Compared to the massivecloud‐based models with hundreds of billions ofparameters, edge models are more limited in functionality.For example, edge models can only support relatively“basic” functions such as text summarization, suggesting

intelligent replies based on context, and checkinggrammar. Therefore, introducing edge computing toenhance the inference of edge models is crucial toovercome these limitations [12].
Optimizations of LLMs Large language models can beoptimized using a number of unique techniques. Amongthese, the more typical ones include speculative decoding,and early exit.

Speculative decoding: Large models are slow ininference, but while smaller models may have inferiorinference capabilities, they can still provide a passableresult. Therefore, some have compressed large modelsinto smaller models. These smaller models are then runon edge devices to first obtain a result. The data issubsequently sent to cloud or edge services to executethe complete large model for a more accurate result.Finally, the best result is used to further refine theoutput of the edge device's model. For example, Wanget al. [37] proposed Tabi, a multistage inference enginesystem that uses smaller models along with optionalLLMs to provide query services for demandingapplications. Tabi uses calibrated confidence scores todecide whether to return the smaller model's accurateresults at high speed or to reroute them to the LLM.For rerouted queries, it employs attention‐based tokenpruning and weighted ensemble techniques to offsetsystem overhead and accuracy loss.
Early exit: Early exit techniques have been widely usedin LLM inferencing to reduce latency. In this case, themodel on the end‐device or edge‐device can beexecuted only partially instead of having to be executedin its entirety, which can reduce the cost. For example,Chen et al. [4] proposed a framework for large

language modeling called early‐exit (EE)‐LLM withsupport for both training and early exiting of inference,which improves the overall model training andinferencing speed. At the same time, it can becombined with others to further reduce the overalllatency.
Splitting Model with Edge Computing From theinception of edge computing, extensive research hasfocused on empowering edge devices with artificialintelligence. Researchers have explored methods such assplitting models or processing the entire model on edgedevices. The latter approach, where the entire model isprocessed on the edge device, is more straightforward.However, the former approach—splitting the model forexecution—tends to be far more efficient than executingthe entire model on edge devices.One classic work, such as that by Kang et al. [17], involvessplitting networks like AlexNet layer by layer. Theirresearch demonstrated the data sizes of the intermediateoutputs after splitting and showed that utilizing cloud‐edge‐device collaboration can effectively reduce overall latency.Similarly, the work of Zhang et al. [48, 49] from both theapplication and model levels has further confirmed thisapproach.In the context of LLMs, the approach of model splitting anddeploying along the edge computing path is particularlywell suited for LLM inference. On the one hand, comparedto on‐device LLM inference, split LLM inference offloadsmost of the computation to edge servers, thereby reducingthe workload on the device, which is crucial forcomputation‐intensive LLM inference. On the other hand,considering that LLM applications in edge networks (suchas healthcare and autonomous driving) often involve highlysensitive personal data, split LLM inference can effectively

alleviate privacy concerns, as the edge device does notneed to share private raw data with the edge server.Following the approach of Kang et al. [17], splitting LLMinference can still be effective. The initial layers of themodel can be processed on the device, while the remaininglayers are offloaded to the edge server for inference. Someworks have already adopted this approach, such as Ohtaand Nishio [26] and Ma et al. [23]. Of course, this methodstill involves significant overhead, placing high demands onthe inference capabilities of the edge servers.Also, edge computing could utilize the feature of LLMs tofurther reduce the latency in terms of computing andtransmitting. For example, some works target tokencompression in LLMs, which they call token representationreduction. In fact, the core idea of their work is to take theintermediate output layers that need to be segmented, andcompress them using quantization, pruning, and so on. Forexample, Cao et al. [3] inserts a binarization module afterlayer norm layers to quantize the token representationswith 1‐bit vectors.
6.2.2.3 Model Caching with Edge ComputingIn fact, beyond simply improving model inference andtraining, model caching is another common approach usedto enhance efficiency in distributed inference or learning.Just as edge computing originally evolved from datacaching in content delivery networks (CDNs), it can beseen as caching various computing services at the edge.Model caching is also applicable to large models.In LLMs, techniques such as fine‐tuning often allowmodifications to the base model, resulting in multiplemodels that are fine‐tuned from the same base. However,these models often share many identical sub‐models. Byutilizing caching techniques to store these submodels at

the edge, both learning and inference can significantlyreduce memory overhead on edge devices. Furthermore,batch processing can be employed to accelerate inference.This technique proves especially effective in distributededge learning, particularly in scenarios like split learningor split inference.In terms of caching, some studies are already underway.For example, Qu et al. [28] proposed the TrimCachingframework, which focuses on parameter‐sharing edgecaching for AI model downloading. However, this conceptcan also be applied to collaborative inference.
6.2.3 Integration with Generative AIGenerative AI refers to a subset of AI that focuses oncreating new content [43], such as text, images, music, oreven code, by learning patterns from existing data. Unliketraditional Ai models that are designed to recognizepatterns or make decisions based on input data, generativeAI models can produce original content that wasn'texplicitly programmed. This is achieved through techniquessuch as generative adversarial networks (GANs),variational autoencoders (VAEs), and more recently, LLMslike GPT.These models have gained significant attention due to theirability to generate high‐quality, contextually relevantoutputs that can mimic human‐like creativity and decision‐making. This ability to generate new data or content hasbroad applications across various fields, including naturallanguage processing, computer vision, and even scientificresearch [29].Generative AI can be effectively integrated with edgecomputing to enhance the capability of IoT systems andother edge applications in a few ways.

Real‐time Data Processing and Decision‐Making:Generative AI models deployed on edge devices cananalyze and generate data in real time, allowing forimmediate responses to be made directly on the device.For example, in autonomous vehicles, generative AIcould process data from sensors and cameras to predictand react to traffic conditions without needing tocommunicate with a central cloud server. Thiscapability is critical in situations where low latency andreal‐time decision‐making are essential.
Reducing Latency and Bandwidth Requirements:One of the primary benefits of integrating generative AIwith edge computing is the reduction in data that needsto be sent to and from the cloud. By processing andgenerating data locally, edge devices can reduce theamount of bandwidth required for communication,which is particularly important in environments withlimited connectivity or where data privacy is a concern.For instance, in smart cities, generative AI could beused to process video feeds from traffic cameras tooptimize traffic flow in real‐time, reducing the need totransmit large video files to a central server.
Optimizing AI Models for Edge Devices: Edgedevices typically have limited computational andmemory resources, making it challenging to deploylarge generative AI models. However, modelcompression techniques discussed in Chapter 4, suchas pruning and quantization, can be used to reduce thesize and complexity of these models, making them moresuitable for edge deployment. For example, a quantizedversion of a generative AI model could run on asmartphone or IoT device, generating useful outputswhile consuming less power and memory.

Enhancing Privacy and Security: Generative AIallows edge devices to be more powerful whenprocessing data locally and, therefore, enhancesprivacy and security. Sensitive data, such as personalhealth information, can be analyzed and acted upondirectly on the device, such as personal healthinformation, can be analyzed and acted up directly onthe device, without needing to transmit it to a cloudserver where it could be vulnerable to breaches.
Hybrid Edge‐Cloud Architectures: In scenarioswhere edge devices are not capable of handling the fullcomputational load required by generative AI models, ahybrid approach can be used. In this setup, edgedevices perform lightweight processing, while morecomputationally intensive tasks are offloaded to nearbyedge servers or the cloud. This allows for efficientprocessing while maintaining the benefits of lowlatency and improved privacy. For instance, a smarthome system might use generative AI to process voicecommands locally, while more complex languageprocessing is handled by a cloud server.

Integrating generative AI with edge computing is promisingin creating more intelligent, responsive, and securesystems across various industries, This synergy is likely todrive significant advancements in the way we interact withand benefit from technology in the coming years.
6.2.4 Applications and FutureCurrently, many applications are being developed based onlarge models. The most common use cases remainconversational chatbots, followed by various assistants,such as Google Assistant on smartphones. Of course, byenhancing large models with domain‐specific knowledgeand performing appropriate fine‐tuning, we can obtain

domain‐specific large models that lead to even moreapplications. For instance, large models can be used inindustrial design, medical assistance, and many otherfields. These fine‐tuned domain‐specific large models alsogive rise to models further optimized through various fine‐tuning or prompt engineering, which in turn fosters thecreation of a large model marketplace [30]. Next, we willexplore several potential large model application domainsthat could be highly beneficial and valuable in the future.
Robots: By injecting the intelligence of LLMs intorobots, significant potential can be unlocked [39], suchas achieving humanoids similar to those in the gameDetroit: Become Human. Leveraging the powerfulcapabilities of LLMs, humanoid robots can efficientlyperform a wide range of tasks, from assisting inwarehouses to executing rescue missions, andproviding support in hospitals, elderly communities,and households. In this area, many companies arealready actively developing solutions. For example,Tesla is developing the second generation of itsgeneral‐purpose robot, Optimus, while NVIDIA has itsGR00T project. In the academic world, many efforts arealso being made in this direction. For instance, Joublinet al. [15] proposed the CoPAL architecture, and Zhaoet al. [51] introduced the RoCo system, both of whichutilize large language models to achieve collaborativepath planning for multiple robots, thus improving taskexecution efficiency.
Autonomous driving: Most existing autonomousdriving solutions rely on a modular approach, dividingdriving tasks into independent components such asperception, prediction, and planning. However,modular design inherently has a limited capacity fortasks that require complex, human‐like reasoning. And

LLMs are suitable for this area while it could be a blackbox to achieve end‐to‐end learning and inference [7].By embedding large language models, not only canbetter‐driving decisions be made [44], but in‐vehicleassistant functions can also be providedsimultaneously. Additionally, the in‐vehicle assistantcould anticipate users' needs and adjust drivingdecisions accordingly, offering a more comfortabledriving experience.
Of course, new technologies also face numerouschallenges, and this is equally true for large languagemodels. For large language models integrated with edgecomputing, there is still a long way to go. Several openquestions need to be addressed, as listed below.

Explainability: In traditional artificial intelligence,explainability has become a key research focus. Thesame applies to LLMs. However, due to the morecomplex architecture of LLMs, how to achieve thefeature of explainability is a major issue. At the sametime, explainability during processes like modelsplitting and submodel extraction is a criticalconsideration in edge computing.
Verifiability: The inferring overhead of LLMs isrelatively high, and edge devices may cut corners bynot returning the correct results to conserve their ownresources. This is particularly concerning when a smallmodel runs on the endpoint while a large model runs onthe edge or in the cloud. The edge service mightentirely agree with the results from the small model atthe endpoint and skip executing the large model.Although there are already some verifiable executionefforts based on secure multiparty computation, the

overhead is too high to be practical in real‐worldscenarios.
Trimmability: Considering the use of edge cachingand other techniques to cache large models andaccelerate inference speeds, one could also exploreselectively executing only certain modules based on theproblem at hand. For lower‐impact models, smallermodels could be used as substitutes. By trimming theexecution based on the problem, the inference speedcan be further increased.

6.3 6G and Edge ComputingIn the realm of network communications, edge computingis often employed to optimize the quality of service at thenetwork edge. For instance, in the 5G era, by deployingcomputing resources near base stations, some data can beprocessed and forwarded at the network edge withoutneeding to route through the core network, thus speedingup data transmission within the network. Similarly, in 6G,recognizing the advantages of emerging technologies likeedge computing, there are plans to deploy artificialintelligence at base stations through edge computing,further enhancing network service quality and improvingdata forwarding efficiency.
6.3.1 Basic Understanding for 6G6G technology is aimed at communication systems beyond2030, with its primary characteristic being the integrationof artificial intelligence to optimize networkcommunication, ranging from physical channels to datapacket forwarding [36]. 6G may also enable ubiquitous AIsupport, providing devices with embedded AIcapabilities [18]. While the specific frequencies for 6G areyet to be determined, the IEEE has indicated that

frequencies ranging from 100 GHz to 3 THz are likelycandidates for 6G [34]. Some of the typical features of 6Ginclude the following:
Increased bandwidth: With the ongoingadvancements in radio interface modulation, codingtechniques, and physical layer technologies, the speedof 6G networks is expected to increase significantly.While the peak rate for 5G is 20 Gbps, 6G could achievepeak rates of 1–10 Tbps due to the use of terahertz andoptical frequency bands.
Diversified communication access: In 1G through5G networks, all devices accessed the network via basestations. However, the 6G vision includes the additionof visible light modulation technology, which canenhance signal quality in specific scenarios.Additionally, 6G plans to integrate satellites at variousorbital heights into a unified space‐ground network,providing diverse access methods for remote areas,maritime users, and low‐altitude unmanned devices,thereby improving network coverage.
AI enablement: As 6G base stations will have limitedcommunication ranges, more base stations will bedeployed. With enhanced chip technology, these basestations will also be capable of handling greatercomputational loads, thereby further enhancing edgecomputing capabilities. This allows for more AI‐drivenfunctionalities, such as intelligent operations andenvironmental awareness. For instance, the basestation could adjust signal transmission frequenciesand directions based on user location sensing,providing higher‐quality network service (a technologyalso often discussed in the integrated sensing andcommunication field [11, 21]). Additionally, basestations may support more edge services.

6.3.2 Mutual Influence: 6G and Edge ComputingConsidering the scope of this book, our focus on 6Gprimarily revolves around its functionalities and thetechnologies related to edge computing and artificialintelligence. Currently, the roles of these two technologiesin 6G are widely recognized. For example, organizationssuch as 3GPP, IEEE, ETSI, and ITU have all proposedintegrating edge computing to achieve 6G in theirrespective standardization of 6G networkarchitecture/frameworks.Edge computing, in this context, operates on two levels. Atthe infrastructure layer, base stations can provide greatercomputational power, supporting both their own operationsand AI‐driven wireless communication optimization.Additionally, due to the flexibility of edge computing, it canbetter coordinate the functions of different base stationsand offer personalized AI services. At the application layer,more computational power can be allocated to edgeservices, enabling a broader range of edge services.Moreover, the relatively interference‐free nature of100 GHz to 3 THz signals, combined with the smallercoverage area of individual base stations and the lowernumber of users that need to be served, allows users toexperience higher bandwidth and lower latency. Thesefactors collectively enhance the enabling role of edgecomputing. The strengthening of edge services, in turn,positively impacts the 6G user experience, creating asynergistic relationship that fosters further development. InSections 6.3.2.1 and 6.3.2.2, we will elaborate on theinfluence of edge computing on 6G and the opportunitiesthat 6G presents for edge computing.

6.3.2.1 Edge Computing‐Enabled 6GAs aforementioned, edge computing technology primarilyserves as an enabler of foundational computational powerin 6G scenarios. Current research indicates that,particularly during the 5G era, some studies have alreadyexplored edge computing‐enabled 5G networks, utilizingnetwork slicing optimization to enhance service quality. In6G, this optimization of network slicing is furtherenhanced, gradually evolving into edge intelligence‐enabled network slicing optimization. Additionally, 6Gintroduces the ability to sense user location and even userposture through communication signals, a capability madepossible by edge intelligence. We will discuss these twotopics, focusing on the role of edge computing, particularlyedge intelligence, in these areas.
Network Slicing Optimization Network slicingtechnology is regarded as a key enabler for serviceoptimization in 6G systems. It allows multiple virtualsubnetworks to be created on a single physicalcommunication infrastructure, each tailored for differentquality of service (QoS) requirements, thereby enhancingthe user experience. This technology acts as the role of atraffic controller, directing certain types of data traffic totake the high‐speed route directly to the core networkwhile other data traffic takes a regular route. It is clearthat the traffic controller must be positioned at thebeginning of the network for optimal efficiency, which iswhy network slicing naturally benefits from edgecomputing technology. Moreover, deploying cachingresources at base stations can further accelerate dataretrieval for wireless network users, thereby improvingservice quality.Ye et al. [46] proposed a network slicing optimizationarchitecture for 6G systems, enabled by mobile edge

computing (MEC), as shown in Figure 6.4. In thisarchitecture, the access point (AP) is connected to adedicated edge distributed unit, enabling thedecentralization of edge computing capabilities. The user‐centric distributed unit primarily provides data cachingfunctions and some collaborative computing capabilities.

Figure 6.4 A hierarchical network slicing architecture. Source: Ye et al. [46]/IEEE.In their architecture, edge computing is utilized for thejoint allocation of communication, computation, andcaching resources at different granularities to meet thedemands of various latency‐sensitive applications. Theapproach first uses conventional optimization algorithms todetermine the optimal allocation and placement ofcomputing resources, followed by the application ofmultiagent deep reinforcement learning to solve problemsand strategies that traditional optimization algorithms maystruggle to address efficiently.
Reconfigurable Intelligent Surfaces The core ideabehind reconfigurable intelligent surfaces (RIS) is to usepassive elements to manipulate the scattering properties of6G electromagnetic waves [32], thereby enhancing the

quality of wireless communication. This technology isconsidered a key communication technology in 6G. Due toits controllable nature—specifically, the ability to enhancesignals at certain locations—RIS can be used to provideprecise wireless services to individual users in 6Gnetworks. However, delivering such precise services is noeasy task. First, the base station must know the user'slocation; only then can it control its elements to facilitatecommunication. In this process, artificial intelligencemethods are needed to process weak wirelesscommunication signals to determine the user's location,followed by algorithms that adjust the RIS accordingly. Aspreviously mentioned, edge computing plays a crucial roleby first enabling the base station with sufficientcomputational power and then integrating with AIalgorithms. Tang et al. [32] and Mukherjee et al. [24] haveboth made preliminary attempts at the above process intheir work. Their results indicate that the use of edgecomputing can reduce the latency associated with RISadjustments, thereby improving service quality.Of course, aside from the aforementioned features, thereare many other 6G functionalities that can benefit fromedge computing. Overall, edge computing can be seen asproviding a foundational layer of computational power to6G base stations. For example, Bell Labs has proposed anew network architecture concept of radio access network(RAN)‐Core integration [35], which unifies parts of theRAN architecture with parts of the core network into asingle entity. This approach reduces network complexityand enhances the scalability of network elements and basestations. In this example, the base station can form a cloud‐edge collaborative system with the core network, providinggreater computational power that supports more AIapplications, thereby enhancing the AI‐enabled capabilitiesof 6G.

6.3.2.2 6G‐Supported Edge ComputingIn Section 6.3.2.1, we mainly discussed how edgecomputing supports the computational power requirementsof the 6G network architecture itself. In this section, wewill focus on some applications that integrate edgecomputing in 6G scenarios. However, since 6G is still in theresearch phase, actual applications are not yet available.Most of the research is still theoretical, focusing on issuessuch as the placement of various computational resources.Since this technology has been extensively discussed inChapter 3, this section will provide a brief introduction,primarily highlighting specific works as examples.Given the shorter communication distances of 6G,deploying a one‐to‐one edge server for every 6G basestation would be prohibitively expensive. Considering alsothe reduced cost of data migration in 6G networks (due tohigher data transmission speeds), Cong et al. [6] proposedthe EdgeGo resource sharing framework for 6G edgecomputing. In their architecture, edge servers are dividedinto stationary and mobile types. Stationary servers handlestrict real‐time tasks, while mobile servers can be used toprocess non‐real‐time data or temporarily enhance thecapabilities of stationary servers. Thanks to the presence ofmobile edge servers, EdgeGo decouples task offloading andexecution, allowing mobile edge servers not to remain fixedin one location upon receiving tasks. Instead, they cancontinue moving and manage the processing results fromanother transmission path, significantly enhancing mobilityand the framework's flexibility, benefiting from theinherent flexibility of 6G networks. Finally, EdgeGointegrates a two‐tier iterative optimization algorithm tocoordinate optimal solutions for transmission paths andcomputing task offloading.

Similarly, Huang et al. [13] have conducted research ontask scheduling for real‐time applications enabled by 6G inedge computing environments. Their work explores taskscheduling under the new 6G network architecture. Asillustrated in Figure 6.5, which represents their proposedarchitecture, their scheduling algorithm primarily relies onreinforcement learning to quickly solve Markov decisionprocesses. To ensure the accuracy of the scheduling, theyadopt edge learning, where the training of thereinforcement learning model is carried out on edgeservers, and the inference process is conducted on thedevices.

Figure 6.5 Architecture of multi‐access edge learning‐based offloading (MELO). The data that flow in the MECsystem include: (1) environment states; (2) trainingsamples; (3) offloading policy; (4) periodic jobs; (5)sporadic jobs; (6) periodic jobs from other mobile devices;and (7) parameters of edge actor network. Source: Huang et al. [13]/IEEE.Based on the work discussed above, it is not difficult to seethat since 6G networks are still in the pre‐research stage,many system‐level tasks have yet to be initiated. Theprimary focus at this point is on task offloading andscheduling. However, whether from the perspective ofstandards or expert opinions, edge computing is certain tobe one of the key enabling technologies in the 6G era,playing a pivotal role and demonstrating its potential in 6Gapplications.
6.3.3 Potential Applications and Challenges6G is considered to have potential applications acrossvarious fields due to its higher bandwidth and lower

latency.
Cloud‐based virtual reality: Cloud‐based virtualreality (VR) is often mentioned as a key applicationscenario for 6G in the future. Virtual reality technologyrequires the transmission of vast amounts of data, suchas rendering data, texture data, and more. While somemanufacturers have already achieved cloud‐basedvirtual reality under 5G, its functionality remainslimited and the related technology has not yet beenfully realized. 6G, on the other hand, can providegreater bandwidth on the terminal side than 5G,allowing for faster delivery of various types of data,thereby enhancing the user experience. Additionally,cloud computing enables the sharing of computationalpower, reducing the computing load on terminaldevices. This, in turn, lowers the performancerequirements for these devices, allowing for lighter andmore portable terminals. Similarly, virtual reality canalso be used to deliver holographic video, empoweringvertical scenarios like smart healthcare. Of course,edge computing can also bring benefits to cloud‐basedvirtual reality technologies. For example, abundantedge computing resources can be leveraged to providelocalized cloud‐based VR services, delivering lowerlatency and further improving the user experience.
Communication sensing and digital twin: Theunique channels in 6G enable electromagnetic wave‐based positioning and motion sensing of thesurrounding environment, a concept previouslymentioned as the integration of communication andsensing. As precision sensing technologies mature, thenext step is to conduct sensing and modeling of specificscenarios as needed, without the need for additionalequipment. For instance, 6G technology can be

employed in digital factories for modeling, intelligentlysensing various machines and manufacturingprocesses, and, when combined with digital twintechnology, achieving a digitalized smart factory. Onone hand, this can be used to predict potential faultsand accidents in advance. On the other hand, it canalso support technological upgrades like Industry 5.0.Additionally, precise digital twins are considered to bethe foundation for technologies like flexiblemanufacturing.
Although 6G holds great potential for a wide range ofapplications, from a practical standpoint, it will still takeconsiderable time before final standards are establishedand large‐scale implementation is achieved. Similar tomany frontier technologies, 6G is currently still in the pre‐research phase, meaning that there are few usable systemsavailable for testing and research. However, we can takeadvantage of this pre‐research period to envision the futureand explore potential implementations in 6G. Specifically,there are still many open questions surrounding 6G andedge computing that need to be addressed.

While intelligent, self‐evolving 6G is undoubtedly thetrend, the question of how to implement it remains.Specifically, how to deploy significant computationalpower at base stations, coordinate it across the entirenetwork, and address future potential applications areall factors that will influence this trend. From a systemsperspective, how to build a robust, flexible, andscalable architecture, and incorporate it into therelevant standards, in order to provide a degree offlexibility during the initial stages of 6G—enabling it toadapt to rapidly changing future applications—remainsan open question. This presents significant challengesfor system research.

While the integration of communication and sensinghas inspired many applications, the technology has adual nature. Sensing the surrounding environmentinevitably raises concerns about user privacy.Therefore, another open question is how to addressprivacy protection at the technical level in order toadvance communication‐sensing integratedtechnologies.
6.4 Edge Computing in Space
ExplorationWith the development of various nanosatellite technologiesin recent years, orbital edge computing (OEC) hasgradually emerged as a means to enhance the flexibility ofsatellite data processing. OEC is also an exploration ofedge computing in the context of space exploration. Thissection will elaborate on the basic concepts, typicalsystems, applications, and challenges associated with OEC.
6.4.1 Basic ConceptsTraditional satellites primarily function by relaying signalsfrom ground stations, enabling long‐distance datatransmission, or by collecting observational data fromspace and sending it back to Earth. A commonly usedtechnology in this context is the bent‐pipe satellitetransponder. The bent‐pipe is a core component ofcommunication satellites, primarily serving as anintermediary for data transmission, facilitating signalswitching between uplink and downlink. In simpler terms,it forwards data from one side to the other, enablingcommunication between satellites and ground stations. Theperformance parameters of the bent‐pipe transponderdirectly influence the overall performance of satellitecommunication systems. Therefore, traditional satellites

have relatively weak data‐processing capabilities andmainly function as switches or sensors.Satellites are classified by their orbital heights into lowEarth orbit (LEO), highly elliptical orbit (HEO), middleEarth orbit (MEO), and geostationary orbit (GEO).Table 6.3 from [41] provides the characteristics of satellitesin different orbits, including altitude, period, and so on. Inrecent years, with the development of LEO technologies,especially with the introduction of StarLink, LEO satelliteshave gradually come into public focus. Currently,thousands of LEO satellites have been launched globally.These satellites are capable of providing around‐the‐clocknetwork services to most regions worldwide, which hasspurred interest in OEC.

Table 6.3 Comparison of satellites in different orbit.Source: Data from Wu et al. [41].
LEO HEO MEO GEOAltitude 300–1500 km 600–40,000 km 8000–20,000 km 35,786 km

Period 1.4–2.5 h 12 h 6–12 h 24 hNum. ofsatellites aconstellation
24,000 4–8 8–16 3–4

Coverage Global Highlatitudeareas
Global Global(exceptpolarregions)Latency 5–35 ms 150–250 ms 50–100 ms 270 ms

Passdurations About10 min 4–8 h 1–2 h All thetimeTypicalconstellation Iridium,Starlink,Kuiper,O3B
Molniya,Loopus,Archimedes

Odyssey Inmarsat,MSAT,Mobilesat
In fact, as early as 2011, the concept of satellite cloudcomputing was proposed [16]. However, possibly due to theidea being too ahead of its time and the demand not yetbeing mature, it did not attract much attention. In recentyears, with the improvement in satellite capabilities and theincreasing amounts of data for sensing, relaying, andtransmission, people have started to consider orbital edgecomputing. The goal is to use edge computing technologyto reduce the amount of data communication betweensatellites and the ground, thereby enabling satellites toserve more users [8, 27].

The first concept and architecture of OEC were proposedby Denby and Lucia [8, 9] from Carnegie Mellon Universityin 2019. The work [9] demonstrated that OEC couldimprove the efficiency of remote sensing image processingby avoiding redundant data transmission between satellitesand the ground. Today, OEC is considered a promisingtechnology for various applications. For instance, remotesensing images captured by LEO satellites can beprocessed directly by OEC, thus reducing the amount ofdata that needs to be transmitted back to Earth.
6.4.2 Advanced Concepts and ArchitectureIn this section, we will further elaborate on the advantagesof OEC. We will begin with a detailed analysis of theadvantages in communication time using a case study.Next, we will introduce the first OEC architecture, followedby an introduction to two typical OEC models, in terms ofend‐edge collaboration and edge‐edge collaboration.
6.4.2.1 Advantages of Orbital Edge ComputingIf orbital edge computing is successfully implemented, wecan envision satellites in space providing low‐latency,globally covered services to ground users, therebysignificantly enhancing the user experience across variousservices. Specifically:

Low latency: Satellites, especially LEO satellites, canprovide low‐latency communication on a global scale.As shown in Table 6.3, the communication latency ofLEO satellites typically ranges between 5 and 35 ms. Inaddition, Bhattacherjee et al. [2] evaluated the latencyof two constellation networks, Starlink and Kuiper, andfound that most latencies were around 4 ms, with someregions experiencing latencies between 8 and 16 ms. Incontrast, for current terrestrial wired networks, even

with CDN technology, network latency often reachestens to hundreds of milliseconds. For some serviceswithout CDN acceleration, or in mobile scenarios,network latency can extend to several hundredmilliseconds [2]. This higher latency is typically causedby numerous routers and switches forwarding data.However, with OEC, services are deployed directly onthe satellites, allowing users to access them directlyand avoiding multiple hops and the processing of datapackets along the way.
Global coverage: On the other hand, OEC brings thepromise of computing to every corner of the Earth.Traditional cloud data centers are relatively sparse onthe map, with some regions, such as South America andAfrica, having little to no presence. In contrast, thereare already thousands of LEO satellites in orbit(SpaceX's plan is the most ambitious, with the goal oflaunching 42,000 satellites). Although the computingpower of these satellites is limited, they can at leastprovide basic network access and extend cloudfunctionality to OEC, bringing computational resourcesto regions across the globe. Therefore, OEC can offerubiquitous “edge computing” without the manychallenges of deploying ground infrastructure invarious locations. In this case, some cloud computingproviders have already started to follow this trend.

6.4.2.2 Typical Architectures in OECBased on the two advantages mentioned above, OEC showssignificant potential. On the one hand, satellites can serveas edge nodes, processing sensing data to reduce theamount of data that needs to be transmitted to the ground,allowing the limited downlink bandwidth to support moresatellites. On the other hand, satellites can form a cloudcomputing infrastructure or edge layer in space, providing

computational resources and offering diverse services tousers. In this subsection, we will introduce examples oftypical system architecture designs based on these twomain approaches. However, it is important to note that theprogress of OEC is still relatively slow. This is primarily dueto the challenges of constructing experimentalenvironments, as there are currently not many satelliteplatforms available for independently developedapplications.
Computing on Satellites In the traditional model, allsatellite data is transmitted back to the ground forcomputation. However, in the end‐edge collaboration modelof OEC, part of the computation can be done on thesatellite, which acts as an edge node. Through coordinationbetween the edge nodes, the computational load on a singlesatellite can be significantly reduced, as well as the amountof data that needs to be transmitted back to Earth.Recently, Denby and Lucia [9] designed an OECarchitecture, which can be considered the first systemarchitecture for OEC. This architecture primarily processesdata on satellites, allowing only partial, relevant data to betransmitted to the ground, thereby alleviating thebottleneck of the downlink bandwidth. Additionally, thearchitecture enables the coordination of computationaltasks between different satellites, leading to moreoptimized processing. To further enhance data processing,Denby et al. [10] also proposed an architecture calledKodan. As shown in Figure 6.6, Kodan's architecture isdesigned to work in two phases: prelaunch and postlaunch.Before launch, models can be customized based on thesatellite's hardware, processing time, location, etc. Oncedeployed, the satellite uses these models to extract high‐value data from the sensed information, therebymaximizing the use of the limited downlink capacity.

Figure 6.6 Kodan architecture design. Source: Denby et al. [10]/ACM, Inc.Currently, there are many similar works. For example,Leyva‐Mayorga et al. [19] applied OEC technology in real‐time, ultra‐high‐resolution Earth observation applicationsto reduce the cost of image transmission. In their approach,they model the state of the downlink (such as bandwidth,connection time, etc.) along with the requirements forimage quality and latency. Based on this model, theypropose a scheduling algorithm to determine the imagecompression quality, ensuring that the transmission canmeet the downlink conditions.
Collaborative Computing The aforementioned worksprimarily focus on improving data quality under limiteddownlink conditions by leveraging OEC. These worksmainly consider computing on the orbit side but do not takeinto account the computational needs on the end side. Inother words, the above works merely bring computation tothe edge but do not fully implement the computational pathenvisioned in edge computing. Regarding edgecollaboration, there are some existing studies, but most ofthem focus on resource scheduling optimization, with fewerworks addressing system‐level considerations.Given the possibility that satellites may deploy edgeservices and provide computational resources to users,

Zhang et al. [50] proposed the OEC Task Allocation (OEC‐TA) algorithm. In their system model, users can uploadtasks to a satellite via a ground station. The satellite thendecomposes the tasks based on a greedy algorithm andschedules them for collaborative processing across thesatellite constellation. The final results are sent back to theuser, thereby enabling the deployment of edge services onorbiting satellites. Similarly, Liu et al. [22] proposed anadvanced computation scheduling algorithm for OEC. Intheir system, satellites can offload computational tasks toother satellites or to the ground. Their approach mainlyconsiders factors such as energy generated by solarexposure and the energy consumption of task computation,aiming to minimize the energy usage of satellites.However, it is also clear that current research on OEC isstill limited at the system level. Most studies focus onprocessing sensed data on the satellite edge to alleviatedownlink pressure or are more theoretical in nature.
6.4.3 Advanced Scenarios and ChallengesCurrent research on OEC has made some progress,proposing relevant architectures and applications, andconducting modeling and analysis of scheduling issueswithin the system, providing corresponding solutions.However, certain challenges still remain. One of thebiggest problems is the lack of an easily accessibleplatform for researchers to use. Nevertheless, this does nothinder our vision for the technology. If, in the future,satellite constellations are able to provide OEC services, asaforementioned, OEC could leverage its advantages in lowlatency and global coverage to greatly enhance our dailylives.

AR/VR: One of the first applications to benefit from thiswould be augmented reality (AR)/VR‐related

applications. Currently, our VR/AR activities are mostlyconducted on single devices, and due to the highcomputational demands of AR applications, renderingand data transmission have already introduced somelatency overhead. As a result, it is still difficult for ARapplications to support collaborative scenarios, such asremote gatherings. As previously mentioned, in thecurrent Internet environment, most networktransmissions have latencies ranging from tens tohundreds of milliseconds. This delay makes itchallenging for multiple users to share interactionsthrough cloud services without affecting theexperience, particularly in gaming. By offloading someof the cloud service functions, such as interaction‐sharing services, to satellites, it would be possible totransmit only a small amount of data while achievinglow latency—such as the 5–35 ms shown in Table 6.3.This would greatly improve the user experience.Similarly, AR/VR would not be limited to gaming butcould also extend to daily work activities, such ascollaborative surgeries, design discussions, and more.
Space exploration: In this section, we have discussedhow OEC applied to Earth observation can bringnumerous benefits, as demonstrated by the first OECproject. Going further, space exploration can alsobenefit from OEC. Currently, some space probes sendtheir data back to Earth for analysis, and raw datainevitably consumes a significant amount of bandwidth.Additionally, the data transmission windows for somesatellites are limited. By leveraging OEC, this data canbe distributed to other nodes in space for relaying andprocessing, allowing for continuous data transmissionaround the clock while reducing the volume of datasent back, thereby addressing the downlink bandwidthlimitations.

However, there are still numerous challenges facing OECthat require urgent research and resolution in order to fullyharness the potential of edge computing in satellite‐basedcomputation.
System platforms and software interfaces: Thecomputing environment on satellites differs from thaton the ground, and traditional cloud computing andedge computing orchestrators cannot be directlyapplied to satellites without encountering issues.Satellites themselves are essentially systems thatintegrate communication and computation, so aspecialized operating system is needed to manageresources on such hardware systems. From a researchperspective, there is currently no universal platform oreasy‐to‐use simulator available for researchers, makingit difficult for most to conduct related studies.
Resource management: While LEO satellites canprovide low‐latency communication, the time they canserve a specific region (or user) is extremely limited,often just a matter of minutes. Although satelliteconstellations can provide alternating services, thisplaces stringent demands on scheduling algorithms. Onthe one hand, satellite positioning and userrelationships need to be modeled, and on the otherhand, modeling the airborne satellite network isnecessary to optimize scheduling. Furthermore, OECmust offer seamless data link migration without anyuser‐perceived interruptions, or else the userexperience will be severely impacted.

6.5 Summary and Practice

6.5.1 SummaryAlthough several new computing paradigms have beenproposed in recent years, such as sky computing,computing power network, and meta computing, they canessentially be viewed as enhancements to edge computingin certain aspects. In other words, they can all beintegrated with edge computing to further enhance itscapabilities. For example, sky computing emphasizes thecollaboration of heterogeneous clouds, computing powernetwork focuses on the synergy between edge and multi‐cloud environments, while meta computing primarilyaddresses the security issues in cross‐domain collaborationwithin edge computing.Next, we introduced the application of edge computing inseveral emerging technologies. In the field of artificialintelligence, edge computing can enhance the intelligenceof devices on the edge by training, inferring, and cachinglarge language models at the network edge. In the 6Gdomain, edge computing serves as the computationalfoundation of the 6G network architecture, providing abase platform for AI technologies to achieve intelligentsignal control and network slicing. At the same time, 6Grepresents a significant application scenario for edgecomputing. In the field of orbital computing, somesatellites, particularly low‐orbit satellites, are equippedwith limited computational capabilities, giving rise to theemerging field of orbital edge computing. In this area, edgecomputing is still in its infancy; the primary focus is onprocessing data at the edge on satellites to reduce datatransmission costs and to empower space exploration.Finally, in the emerging technologies mentioned earlier, wealso discussed several research directions that are worthfurther exploration, with the hope of encouraging moreresearchers to engage in systematic studies in these areas.

6.5.2 Practice Questions
1. What is the relationship between edge computing and anew distributed computing paradigm, using one as anexample?2. How does edge computing enhance artificialintelligence, particularly large language modeltechnology?3. What are the main characteristics of 6G, and how do6G and edge computing technologies influence eachother?4. Discuss the challenges and opportunities of integratingorbital computing technology with edge computing.

6.5.3 Course Projects
1. Deploy large language models, such as Edge‐LLM(https://github.com/GATECH-EIC/Edge-LLM),LlamaEdge(https://github.com/LlamaEdge/LlamaEdge), onheterogeneous hardware and explore the segmentationof specific models at different layers in an edgecomputing environment, observing the changes intransmission costs and computational costs.2. Inspired by the concepts discussed in the paper “TheInternet of Things in the Era of Generative AI: Visionand Challenges,” Wang et al. [40] select a specific IoTapplication (e.g., smart home, healthcare monitoring,and industrial IoT) and explore how generative AI canbe applied to enhance its functionality.3. By leveraging open‐source projects, construct scenariosfor cross‐cloud and cross‐domain edge collaboration.Consider using communication networks from differenttelecom operators to simulate cross‐domain edge

https://github.com/GATECH-EIC/Edge-LLM
https://github.com/LlamaEdge/LlamaEdge

collaboration, and try to understand the distinctionsbetween sky computing, computing power network,and meta computing in comparison to edge computing.Recommended open‐source projects include:OpenFaaS, KubeEdge, and Kubernetes.4. Utilize the open‐source project Cote(https://github.com/CMUAbstract/cote) to explore theprinciples and applications of orbital edge computing.

https://github.com/CMUAbstract/cote

Chapter 6 Suggested Papers
 1 Xiuzhen Cheng et al. “Meta computing”. In: IEEE

Network 38. 2 (2024), pp. 225–231. ISSN: 1558‐156X.DOI: 10.1109/MNET003.2300092. 2 Bradley Denby and Brandon Lucia. “Orbital edgecomputing: Nanosatellite constellations as a new class ofcomputer system”. In: Proceedings of the 25th
International Conference on Architectural Support for
Programming Languages and Operating Systems.ASPLOS '20. New York, NY, USA: Association forComputing Machinery, Mar. 2020, pp. 939–954. ISBN:978‐1‐4503‐7102‐5. DOI: 10.1145/3373376.3378473. 3 Khaled B Letaief et al. “Edge artificial intelligence for6G: Vision, enabling technologies, and applications”. In:
IEEE Journal on Selected Areas in Communications 40. 1(2022), pp. 5–36. ISSN: 1558‐0008. DOI:10.1109/JSAC.2021.3126076. 4 Guanqiao Qu et al. Mobile Edge Intelligence for Large
Language Models: A Contemporary Survey.arXiv:2407.18921 [cs]. July 2024. DOI:10.48550/arXiv.2407.18921. url:http://arxiv.org/abs/2407.18921. 5 Ion Stoica and Scott Shenker. “From cloud computing tosky computing”. In: HotOS '21: Workshop on Hot Topics
in Operating Systems, Ann Arbor, Michigan, USA, June,
1–3, 2021. Ed. by Sebastian Angel, Baris Kasikci, andEddie Kohler. ACM, 2021, pp. 26–32. DOI:10.1145/3458336.3465301.

http://arxiv.org/abs/2407.18921

References 1 Tiemo Bang et al. “SkyPIE: A fast & accurate oracle forobject placement”. In: Proceedings of the ACM on
Management of Data 2. 1 (2024), pp. 55:1–55:27. DOI:10.1145/3639310. 2 Debopam Bhattacherjee et al. “In‐orbit computing: Anoutlandish thought experiment?” In: Proceedings of the
19th ACM Workshop on Hot Topics in Networks. HotNets'20. New York, NY, USA: Association for ComputingMachinery, Nov. 2020, pp. 197–204. ISBN: 978‐1‐4503‐8145‐1. DOI: 10.1145/3422604.3425937. 3 Qingqing Cao et al. BTR: Binary Token Representations
for Efficient Retrieval Augmented Language Models. May2024. DOI: 10.48550/arXiv.2310.01329. arXiv:2310.01329 [cs]. 4 Yanxi Chen et al. EE‐LLM: Large‐Scale Training and
Inference of Early‐Exit Large Language Models with 3D
Parallelism. June 2024. DOI: 10.48550/arXiv.2312.04916.arXiv: 2312.04916 [cs]. 5 Xiuzhen Cheng et al. “Meta computing”. In: IEEE
Network 38. 2 (2024), pp. 225–231. ISSN: 1558‐156X.DOI: 10.1109/MNET003.2300092. 6 Rong Cong et al. “EdgeGO: A mobile resource‐sharingframework for 6G edge computing in massive IoTsystems”. In: IEEE Internet of Things Journal 9. 16(2022), pp. 14521–14529. ISSN: 2327‐4662. DOI:10.1109/JIOT.2021.3065357. URL:https://ieeexplore.ieee.org/abstract/document/9375469. 7 Can Cui et al. “Receive, reason, and react: Drive as yousay, with large language models in autonomous

https://ieeexplore.ieee.org/abstract/document/9375469

vehicles”. In: IEEE Intelligent Transportation Systems
Magazine 16. 4 (2024), pp. 81–94. ISSN: 1941‐1197.DOI: 10.1109/MITS.2024.3381793. URL:https://ieeexplore.ieee.org/abstract/document/10491134. 8 Bradley Denby and Brandon Lucia. “Orbital edgecomputing: Machine inference in space”. In: IEEE
Computer Architecture Letters 18. 1 (2019), pp. 59–62.ISSN: 1556‐6064. DOI: 10.1109/LCA.2019.2907539. 9 Bradley Denby and Brandon Lucia. “Orbital edgecomputing: Nanosatellite constellations as a new class ofcomputer system”. In: Proceedings of the 25th
International Conference on Architectural Support for
Programming Languages and Operating Systems.ASPLOS '20. New York, NY, USA: Association forComputing Machinery, Mar. 2020, pp. 939–954. ISBN:978‐1‐4503‐7102‐5. DOI: 10.1145/3373376.3378473.

10 Bradley Denby et al. “Kodan: Addressing thecomputational bottleneck in space”. In: Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3. ASPLOS 2023. New York, NY, USA:Association for Computing Machinery, Mar. 2023, pp.392–403. ISBN: 978‐1‐4503‐9918‐0. DOI:10.1145/3582016.3582043.

11 Nuria González‐Prelcic et al. “The integrated sensingand communication revolution for 6G: Vision, techniques,and applications”. In: Proceedings of the IEEE 112. 7(2024), pp. 676–723. ISSN: 1558‐2256. DOI:10.1109/JPROC.2024.3397609.
12 Ying He et al. “Large language models (LLMs) inferenceoffloading and resource allocation in cloud‐edge

https://ieeexplore.ieee.org/abstract/document/10491134

computing: An active inference approach”. In: IEEE
Transactions on Mobile Computing 23. 12 (2024), pp.11253–11264. ISSN: 1558‐0660. DOI:10.1109/TMC.2024.3415661. URL:https://ieeexplore.ieee.org/abstract/document/10591707.

13 Hui Huang, Qiang Ye, and Yitong Zhou. “6G‐empoweredoffloading for realtime applications in multi‐access edgecomputing”. In: IEEE Transactions on Network Science
and Engineering 10. 3 (2023), pp. 1311–1325. ISSN:2327‐4697. DOI: 10.1109/TNSE.2022.3188921. URL:https://ieeexplore.ieee.org/abstract/document/9817805.

14 Paras Jain et al. “Skyplane: Optimizing transfer cost andthroughput using cloud‐aware overlays”. In: 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). 2023, pp. 1375–1389. ISBN:978‐1‐939133‐33‐5.

15 Frank Joublin et al. “CoPAL: Corrective planning ofrobot actions with large language models”. In: 2024
IEEE International Conference on Robotics and
Automation (ICRA). May 2024, pp. 8664–8670. DOI:10.1109/ ICRA57147.2024.10610434. URL:https://ieeexplore.ieee.org/abstract/document/10610434.

16 Kamen Kanev and Nikolay Mirenkov. “Satellite cloudcomputing”. In: 2011 IEEE Workshops of International
Conference on Advanced Information Networking and
Applications. Mar. 2011, pp. 147–152. DOI: 10.1109/WAINA.2011.61.

17 Yiping Kang et al. “Neurosurgeon: Collaborativeintelligence between the cloud and mobile edge”. In:
ACM SIGARCH Computer Architecture News 45. 1

https://ieeexplore.ieee.org/abstract/document/10591707
https://ieeexplore.ieee.org/abstract/document/9817805
https://ieeexplore.ieee.org/abstract/document/10610434

(2017), pp. 615–629. ISSN: 0163‐5964. DOI:10.1145/3093337.3037698.
18 Khaled B Letaief et al. “The roadmap to 6G: AIempowered wireless networks”. In: IEEE

Communications Magazine 57. 8 (2019), pp. 84–90.ISSN: 1558‐1896. DOI: 10.1109/MCOM.2019.1900271.
19 Israel Leyva‐Mayorga et al. “Satellite edge computingfor real‐time and very‐high resolution earth observation”.In: IEEE Transactions on Communications 71. 10 (2023),pp. 6180–6194. ISSN: 1558‐0857. DOI:10.1109/TCOMM.2023.3296584.
20 Zheng Lin et al. “Efficient parallel split learning overresource‐constrained wireless edge networks”. In: IEEE

Transactions on Mobile Computing (2024), pp. 1–16.ISSN: 1558‐0660. DOI: 10.1109/TMC.2024.3359040.URL:https://ieeexplore.ieee.org/abstract/document/10415235.
21 Fan Liu et al. “Integrated sensing and communications:Toward dual‐functional wireless networks for 6G andbeyond”. In: IEEE Journal on Selected Areas in

Communications 40. 6 (2022), pp. 1728–1767. ISSN:1558‐0008. DOI: 10.1109/JSAC.2022.3156632. URL:https://ieeexplore.ieee.org/abstract/document/9737357.
22 Weisen Liu et al. “In‐orbit processing or not? Sunlight‐aware task scheduling for energy‐efficient space edgecomputing networks”. In: IEEE INFOCOM 2024 ‐ IEEE

Conference on Computer Communications. May 2024,pp. 881–890. DOI:10.1109/INFOCOM52122.2024.10621268.

https://ieeexplore.ieee.org/abstract/document/10415235
https://ieeexplore.ieee.org/abstract/document/9737357

23 Ruilong Ma et al. “Poster: PipeLLM: Pipeline LLMinference on heterogeneous devices with sequenceslicing”. In: Proceedings of the ACM SIGCOMM 2023
Conference. ACM SIGCOMM '23. New York, NY, USA:Association for Computing Machinery, Sept. 2023, pp.1126–1128. DOI: 10.1145/3603269.3610856.

24 Mithun Mukherjee et al. The Interplay of
Reconfigurable Intelligent Surfaces and Mobile Edge
Computing in Future Wireless Networks: A Win‐Win
Strategy to 6G. arXiv:2106.11784 [cs, math]. May 2021.DOI: 10.48550/arXiv.2106.11784. URL:http://arxiv.org/abs/2106.11784.

25 Deepak Narayanan et al. “Efficient large‐scale languagemodel training on GPU clusters using megatron‐LM”. In:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis. SC '21. New York, NY, USA: Association forComputing Machinery, Nov. 2021, pp. 1–15. ISBN: 978‐1‐4503‐8442‐1. DOI: 10.1145/3458817.3476209. URL:https://dl.acm.org/doi/10.1145/3458817.3476209.

26 Shoki Ohta and Takayuki Nishio. ‐Split: A Privacy‐
Preserving Split Computing Framework for Cloud‐
Powered Generative AI. Oct. 2023. DOI:10.48550/arXiv.2310.14651. arXiv: 2310.14651 [cs].

27 Tobias Pfandzelter. “Serverless abstractions for edgecomputing in large low‐earth orbit satellite networks”.In: Proceedings of the 24th International Middleware
Conference: Demos, Posters and Doctoral Symposium.Middleware '23. New York, NY, USA: Association forComputing Machinery, Dec. 2023, pp. 3–6. DOI:10.1145/3626564.3629088.

http://arxiv.org/abs/2106.11784
https://dl.acm.org/doi/10.1145/3458817.3476209

28 Guanqiao Qu et al. TrimCaching: Parameter‐sharing
Edge Caching for AI Model Downloading.arXiv:2404.14204 [cs]. May 2024. DOI:10.48550/arXiv.2404.14204. URL:http://arxiv.org/abs/2404.14204.

29 Sandeep Singh Sengar et al. “Generative Artificial
Intelligence: A Systematic Review and Applications”. In:
arXiv preprint arXiv:2405.11029 (2024).

30 Yifei Shen et al. “Large language models empoweredautonomous edge AI for connected intelligence”. In:
IEEE Communications Magazine (2024), pp. 1–7. ISSN:1558‐1896. DOI: 10.1109/MCOM.001.2300550. URL:https://ieeexplore.ieee.org/abstract/document/10384606.

31 Ion Stoica and Scott Shenker. “From cloud computing tosky computing”. In: HotOS '21: Workshop on Hot Topics
in Operating Systems, Ann Arbor, Michigan, USA, June,
1–3, 2021. Ed. by Sebastian Angel, Baris Kasikci, andEddie Kohler. ACM, 2021, pp. 26–32. DOI:10.1145/3458336.3465301.

32 Wankai Tang et al. “Wireless communications withreconfigurable intelligent surface: Path loss modelingand experimental measurement”. In: IEEE Transactions
on Wireless Communications 20. 1 (2021), pp. 421–439.ISSN: 1558‐2248. DOI: 10.1109/TWC. 2020.3024887.URL:https://ieeexplore.ieee.org/abstract/document/9206044.

33 Xiongyan Tang et al. “Computing power network: Thearchitecture of convergence of computing andnetworking towards 6G requirement”. In: China
Communications 18. 2 (2021), pp. 175–185. ISSN: 1673‐5447. DOI: 10.23919/JCC.2021.02.011.

http://arxiv.org/abs/2404.14204
https://ieeexplore.ieee.org/abstract/document/10384606
https://ieeexplore.ieee.org/abstract/document/9206044

34 Harish Viswanathan and Preben E Mogensen.“Communications in the 6G era”. In: IEEE Access 8(2020), pp. 57063–57074. ISSN: 2169‐3536. DOI:10.1109/ACCESS.2020.2981745.
35 Harish Viswanathan and Preben E Mogensen.“Communications in the 6G era”. In: IEEE Access 8(2020), pp. 57063–57074. ISSN: 2169‐3536. DOI:10.1109/ACCESS.2020.2981745. URL:https://ieeexplore.ieee.org/abstract/document/9040431.
36 Cheng‐Xiang Wang et al. “On the road to 6G: Visions,requirements, key technologies, and testbeds”. In: IEEE

Communications Surveys & Tutorials 25. 2 (2023), pp.905–974. ISSN: 1553‐877X. DOI: 10.1109/COMST.2023.3249835.
37 Yiding Wang et al. “Tabi: An efficient multi‐levelinference system for large language models”. In:

Proceedings of the 18th European Conference on
Computer Systems. EuroSys '23. New York, NY, USA:Association for Computing Machinery, May 2023, pp.233–248. ISBN: 978‐1‐4503‐9487‐1. DOI:10.1145/3552326.3587438.

38 Guanqun Wang et al. “Cloud‐device collaborativelearning for multimodal large language models”. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2024, pp. 12646–12655.URL:https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Cloud-Device:Collaborative_Learning_for_Multimodal_Large_Language_Models_CVPR_2024_paper.html.

39 Jiaqi Wang et al. Large Language Models for Robotics:
Opportunities, Challenges, and Perspectives.

https://ieeexplore.ieee.org/abstract/document/9040431
https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Cloud-Device:Collaborative_Learning_for_Multimodal_Large_Language_Models_CVPR_2024_paper.html

arXiv:2401.04334 [cs]. Jan. 2024. DOI:10.48550/arXiv.2401.04334. URL:http://arxiv.org/abs/2401.04334.
40 Xin Wang et al. “The Internet of Things in the era ofgenerative AI: Vision and challenges”. In: IEEE Internet

Computing (2024). DOI: 10.1109/MIC.2024.3443169.
41 Changhao Wu et al. A Comprehensive Survey on Orbital

Edge Computing: Systems, Applications, and Algorithms.June 2023. DOI: 10.48550/arXiv.2306.00275. arXiv:2306.00275 [cs].
42 Daliang Xu et al. LLMCad: Fast and Scalable On‐device

Large Language Model Inference. Sept. 2023. DOI:10.48550/arXiv.2309.04255. URL:http://arxiv.org/abs/2309.04255.
43 Minrui Xu et al. “Unleashing the power of edge‐cloudgenerative AI in mobile networks: A survey of AIGCservices”. In: IEEE Communications Surveys & Tutorials26. 2 (2024), pp. 1127–1170. ISSN: 1553‐877X. DOI:10.1109/COMST.2024.3353265. URL:https://ieeexplore.ieee.org/abstract/document/10398474.
44 Zhenhua Xu et al. “DriveGPT4: Interpretable end‐to‐endautonomous driving via large language model”. In: IEEE

Robotics and Automation Letters 9. 10 (2024), pp. 8186–8193. ISSN: 2377‐3766. DOI:10.1109/LRA.2024.3440097. URL:https://ieeexplore.ieee.org/abstract/document/10629039.
45 Zongheng Yang et al. “SkyPilot: An intercloud broker forsky computing”. In: 20th USENIX Symposium on

Networked Systems Design and Implementation, NSDI

http://arxiv.org/abs/2401.04334
http://arxiv.org/abs/2309.04255
https://ieeexplore.ieee.org/abstract/document/10398474
https://ieeexplore.ieee.org/abstract/document/10629039

2023, Boston, MA, April 17–19, 2023. Ed. by MaheshBalakrishnan and Manya Ghobadi. USENIX Association,2023, pp. 437–455.
46 Feng Ye et al. “Intelligent hierarchical NOMA‐basednetwork slicing in cell‐free RAN for 6G systems”. In:

IEEE Transactions on Wireless Communications 23. 5(2023), pp. 4724–4737.https://ieeexplore.ieee.org/abstract/document/10278091/.
47 Sun Yukun et al. “Computing power network: A survey”.In: China Communications 21. 9 (2024), pp. 109–145.ISSN: 1673‐5447. DOI: 10.23919/JCC.ja.2021‐0776.
48 Qingyang Zhang et al. “Demo abstract: EVAPS: Edgevideo analysis for public safety”. In: 2016 IEEE/ACM

Symposium on Edge Computing (SEC). IEEE, 2016, pp.121–122.
49 Quan Zhang et al. “Firework: Data processing andsharing for hybrid cloud‐edge analytics”. In: IEEE

Transactions on Parallel and Distributed Systems 29. 9(2018), pp. 2004–2017. ISSN: 1558‐2183. DOI:10.1109/TPDS.2018.2812177.
50 Yuru Zhang et al. “Aerial edge computing on orbit: Atask offloading and allocation scheme”. In: IEEE

Transactions on Network Science and Engineering 10. 1(Jan. 2023), pp. 275–285. ISSN: 2327‐4697. DOI:10.1109/TNSE.2022.3207214.
51 Wayne Xin Zhao et al. A Survey of Large Language

Models. arXiv:2303.18223 [cs]. Nov. 2023. DOI:10.48550/arXiv.2303.18223. URL:http://arxiv.org/abs/2303.18223.

https://ieeexplore.ieee.org/abstract/document/10278091/
http://arxiv.org/abs/2303.18223

Note* This chapter is contributed by Qingyang Zhang.

7
Case Studies and Practical
Applications*
Edge computing represents a significant paradigm shift inthe way data is processed, analyzed, and acted upon,bringing computation and data storage closer to the sourceof data generation. This chapter delves into an in‐depthexploration of edge computing systems through the lens ofreal‐world case studies across six pivotal sectors:manufacturing, Internet of Things (IoT) retail, healthcare,telecommunications, autonomous vehicles, and smartcities. By examining the implementation and outcomes inthese diverse fields, we aim to illustrate the profoundimpact of edge computing on operational efficiency,decision‐making, and innovation.In the manufacturing sector, edge computing isrevolutionizing production lines, enabling predictivemaintenance, real‐time quality control, and efficientresource management. By processing data at the edge,manufacturers can reduce downtime, enhance productivity,and ensure higher standards of product quality. Thedeployment of edge computing in smart factoriesexemplifies how leveraging real‐time data can lead tosubstantial cost savings and improved operationalresilience [32].IoT significantly benefits from edge computing byenhancing real‐time data processing, reducing latency, andimproving overall system efficiency. In IoT ecosystems, vastamounts of data are generated by numerous connecteddevices, often requiring immediate analysis and response.Edge computing addresses this need by processing data

closer to the source, minimizing the delay caused by datatransmission to centralized cloud servers. This proximity todata sources not only reduces network congestion but alsoensures faster decision‐making and more timely actions,which are critical in applications such as autonomousvehicles, industrial automation, and healthcare monitoring.Additionally, edge computing enhances data security andprivacy by limiting the exposure of sensitive information topotential vulnerabilities associated with cloud storage andtransmission. By decentralizing data processing andbringing computational power closer to IoT devices, edgecomputing enables more robust, scalable, and responsiveIoT solutions [5].Retail, on the other hand, benefits from edge computing byenhancing customer experiences through personalizedservices and smarter inventory management. By analyzingdata locally, retailers can offer customized promotions,optimize supply chains, and respond swiftly to markettrends. The primary problem is the increasing data volumefrom IoT devices, which creates challenges in managing,analyzing, and utilizing data in real‐time, especially forbrick‐and‐mortar stores competing with online retailers.Key challenges include ensuring low latency, managingcomputational load, and integrating various IoTtechnologies effectively [8].Healthcare stands to gain immensely from edge computing,particularly in the realms of patient monitoring,diagnostics, and treatment. Edge computing allows for real‐time processing of medical data from wearable devices,facilitating timely interventions and personalized care. Inthis chapter, we will examine case studies demonstratinghow edge computing supports advanced healthcareapplications, from remote patient monitoring to enhancedmedical imaging, ultimately leading to better patient

outcomes and more efficient healthcare delivery systems[15, 38].The telecommunications industry is at the forefront of edgecomputing adoption, driven by the need to support theever‐growing demand for bandwidth and low‐latencyservices. Edge computing plays a crucial role in optimizingnetwork performance, enabling the deployment of 5Gnetworks, and supporting emerging applications such asaugmented reality (AR) and virtual reality (VR). Throughdetailed case studies, we will uncover howtelecommunications companies leverage edge computing toenhance service delivery, improve network efficiency, anddrive innovation in communication technologies [51]. Asummary of potential edge computing applications can besummarized in Figure 7.1.Autonomous vehicles represent a cutting‐edge applicationof edge computing, where the need for real‐time dataprocessing is paramount. Edge computing enablesautonomous vehicles to make real‐time decisions based onlocal data, ensuring safety and reliability. Challengesinclude ensuring low‐latency data processing, maintainingenergy efficiency, and securing the system againstpotential attacks across various layers. Edge computingsystems can be used to handle the intensive computationaltasks locally, reducing the dependency on centralized cloudinfrastructure. Additionally, vehicle‐to‐everything (V2X)communication is highlighted as a critical technology forproviding redundancy and alleviating computational load,thereby enhancing the overall reliability and safety ofautonomous driving systems [25, 28].

Figure 7.1 A taxonomy of edge computing applications.Source: Zhao et al. [51]/IEEE.Lastly, smart cities epitomize the transformative potentialof edge computing on urban living. By deploying edgecomputing systems, cities can manage resources moreeffectively, enhance public safety, and improve the qualityof life for their inhabitants. From intelligent trafficmanagement to smart energy grids, this chapter willexplore how edge computing facilitates the creation ofmore sustainable and livable urban environments [3, 14,20, 34, 40].Through these comprehensive case studies, this chapteraims to provide a thorough understanding of how edgecomputing is being implemented across various industries.We will analyze the challenges faced, solutions devised,and the tangible benefits realized by each sector. Bybridging the gap between theoretical concepts andpractical applications, this chapter serves as a crucialresource for understanding the role of edge computing in

driving forward technological advancements and shapingthe future of these critical domains [16].
7.1 ManufacturingEdge computing significantly enhances the manufacturingsector by improving efficiency, reducing latency, andenabling real‐time data processing. By processing datacloser to the source, manufacturers can achieve rapid andautonomous decision‐making, essential for intelligentmanufacturing systems. This approach facilitates predictivemaintenance, timely detection and response to productionanomalies, and real‐time quality control, leading to reduceddowntime and increased productivity. Additionally, edgecomputing optimizes resource management and bandwidthusage, ensuring higher standards of product quality andoperational resilience. Despite challenges like middlewareflexibility and managing diverse communication protocols,edge computing provides the agility, security, andresponsiveness needed for modern, IoT‐basedmanufacturing environments.The paper “Edge Computing in IoT‐Based Manufacturing”by Baotong Chen et al. [11] (as shown in Figure 7.2)explores the pivotal role of edge computing in enhancingoperational efficiency, reducing latency, and enabling real‐time data processing in the manufacturing sector. Edgecomputing shifts computation closer to data sources, whichis critical for intelligent manufacturing systems requiringrapid and autonomous decision‐making. The proposedarchitecture encompasses four domains: devices (sensors,robots), network (software‐defined networking [SDN] andtime‐sensitive networking [TSN] for real‐time data flow),data (cleaning, feature extraction), and applications(intelligent process management). A case study on activemaintenance in a smart factory revealed that edge

computing significantly improved efficiency, agility, andreduced network load by 60%, showcasing its potential forbusiness agility and bandwidth optimization. Despite itsbenefits, challenges such as the need for flexiblemiddleware, managing diverse communication protocols,and ensuring real‐time processing with security remain.Overall, edge computing is essential for advancing IoT‐based manufacturing, supporting the development ofresponsive and resilient industrial systems by providingenhanced agility, security, and real‐time processingcapabilities.

Figure 7.2 Edge computing in manufacturing.Source: Chen et al. [11]/IEEE.The paper titled “Edge Computing Enabled ProductionAnomalies Detection and Energy‐Efficient ProductionDecision Approach for Discrete Manufacturing Workshops”[49] addresses the complexities and dynamics of modern

manufacturing processes, which frequently experienceproduction anomalies such as spindle failure and cuttingtool wear. These anomalies significantly impactmanufacturing quality and productivity. The main challengelies in the timely detection and response to these anomaliesamidst the rapid development and data proliferation drivenby IoT technologies. To tackle this, the paper proposes aninnovative approach leveraging edge computing. Thesolution introduces a three‐layer architecture for anomalydetection and energy‐efficient production decisions, usingan energy consumption data preprocessing algorithm and aproduction anomaly analysis model based on a long short‐term memory (LSTM) network. This framework ensuresreal‐time data processing, reduces latency, and supportsenergy‐efficient decision‐making when anomalies aredetected. The proposed method demonstrates a highdetection accuracy with an anomaly detection error of only3.5%, proving its effectiveness in enhancing productionprocess monitoring and energy conservation in a discretemanufacturing workshop.The paper titled “Edge Computing in Smart Production” byJumyung Um et al. [43] explores the implementation ofedge computing within Cyber‐Physical Production Systemsto enhance flexibility and efficiency in smartmanufacturing. The main problem addressed is thesynchronization between digital models and physicalobjects, and the application of decision‐making within thesemodels, which is often hindered by unstable cloudconnections and high latency. The challenges lie inmanaging the vast amounts of data generated bymanufacturing processes, ensuring real‐time response, andmaintaining system reliability despite limited computingresources at the edge. The proposed solution involves anedge computing architecture that acts as an intermediarybetween machines, offering local cloud services with fast

response times and preprocessing capabilities. Thisarchitecture supports real‐time data processing andhuman–machine interaction, demonstrated through thepreprocessing of data from AR devices to facilitate real‐time communication with the cyber‐model. The edgeplatform effectively manages computing resources andprioritizes processes, enabling dynamic updates toproduction lines and improving the overall efficiency andresponsiveness of smart production environments.In 2023, Yu et al.'s paper “Edge Computing‐Assisted IoTFramework with an Autoencoder for Fault Detection inManufacturing Predictive Maintenance” [48] addresses theurgent need for real‐time, intelligent predictivemaintenance in industrial manufacturing, which requireslow latency responses to alarms. Traditional cloud‐basedIoT frameworks suffer from high latency and networkcongestion issues. The proposed solution integrates edgecomputing to decentralize data processing, reduce networkpressure, and protect user privacy while optimizing cloudcosts and resources. The framework introduces anautoencoder‐based deep learning method for moreaccurate fault detection, implemented within a three‐layerarchitecture consisting of edge, cloud, and applicationlayers. This architecture facilitates real‐time data ingestion,preprocessing, and analysis, enabling timely responses tomaintenance needs. A distributed stacked sparseautoencoder is employed to handle the complex, nonlinearrelationships between sensors, providing robust faultdetection in a real‐time, distributed manner. This approachsignificantly reduces system response time and enhancesthe performance and efficiency of the predictivemaintenance ecosystem, making it a practical and scalablesolution for smart manufacturing.

7.2 TelecommunicationsEdge computing greatly benefits the telecommunicationsindustry by improving performance metrics and reducingcosts. It enhances throughput, reduces latency, andimproves video delay by distributing applications andcontent closer to end‐users, thus minimizing networkcongestion and enhancing Quality of Experience (QoE).This approach also reduces the total cost of ownership(TCO) by offloading peak traffic from the core network toedge nodes. Additionally, integrating edge computing withultra‐reliable low‐latency communication (URLLC)addresses the high latency and reliability challenges ofcentralized cloud computing. It supports mission‐criticalapplications like VR, V2X, and edge artificial intelligence(AI) by bringing computational resources closer to networknodes. This ensures timely and reliable data processing,leveraging technologies like high‐capacity millimeter‐wavelinks, proximity‐based computing, and edge machinelearning to meet stringent latency and reliabilityrequirements. Overall, edge computing is crucial foradvancing telecommunications infrastructure, optimizingnetwork performance, and enabling new services.The paper “Edge Cloud Computing in Telecommunications:Case Studies on Performance Improvement and TCOSaving” [12] (as shown in Figure 7.3) discusses theimplementation and benefits of Edge Cloud Computing(ECC) in telecommunications networks. ECC is becomingcrucial as new services like 4K/8K video streaming, 360‐degree augmented/VR, and autonomous driving demandstringent key performance indicators (KPIs) and lowerTCO. The paper provides several case studiesdemonstrating how ECC can improve KPIs such asthroughput, latency, and video delay, by distributingapplications and content closer to end‐users, thus reducing

network congestion and enhancing QoE. Additionally, ECChelps in reducing TCO by offloading peak traffic from thecore network to edge nodes, leading to cost savings. Thepaper concludes that the strategic deployment of ECC caneffectively address both performance and cost issues intraditional and emerging broadband networks, marking asignificant step forward for telecommunicationsinfrastructure.

Figure 7.3 Edge computing in telecommunications.Source: Ciccarella et al. [12]/IEEE.The paper “Wireless Edge Computing With Latency andReliability Guarantees” [19] investigates the feasibility andpotential of integrating edge computing with ultra‐reliablelow‐latency communication (URLLC) for mission‐criticalapplications such as VR, V2X, and edge artificial

intelligence (AI). The main problem addressed is the highlatency and reliability challenges in centralized cloudcomputing architectures, which are inadequate for latency‐sensitive applications. The proposed solution is adistributed edge computing architecture that bringscomputational and storage resources closer to end networknodes, significantly reducing latency and enhancingreliability. The paper explores several enablers forachieving low latency and high reliability, including high‐capacity millimeter‐wave links, proximity‐based computing,edge machine learning, proactive computing, and paralleland coded computing. Through various use cases, includingVR and vehicular edge computing, the paper demonstrateshow edge computing can meet the stringent requirementsof URLLC, ensuring timely and reliable data processing anddecision‐making at the network edge.
7.3 HealthcareEdge computing significantly enhances healthcare systems(as shown in Figure 7.4) in smart cities by enabling real‐time data processing, reducing latency, and improvingresponsiveness. By processing data closer to the source,edge computing addresses inefficiencies in traditionalcloud‐based systems, which struggle with high latency andbandwidth usage due to the vast amounts of data generatedby IoT devices. This approach ensures timely healthcareanalytics and decision‐making, essential for applicationslike remote patient monitoring, predictive maintenance,and telemedicine. Edge computing also enhances datasecurity and privacy by minimizing the exposure ofsensitive health information to potential vulnerabilitiesassociated with cloud storage and transmission. In elderlycare, edge computing supports efficient, real‐time healthmonitoring, empowering seniors to manage their health

independently and reducing the burden on healthcaresystems. By integrating edge computing with IoMT,healthcare services become more responsive and efficient,ensuring better patient outcomes and optimized resourceusage. Edge computing thus holds significant potential totransform healthcare delivery in smart cities by improvingthe efficiency, security, and real‐time capabilities ofhealthcare applications.

Figure 7.4 Edge computing in healthcare.Source: Dong et al. [18]/IEEE.The paper titled “The Role of Edge Computing in Real‐TimeAnalytics for Smart City Healthcare Applications” byBalaram Yadav Kasula [24] delves into the critical functionof edge computing in enhancing real‐time analytics insmart city healthcare contexts. The primary problemaddressed is the inefficiency of traditional cloud‐based

systems in managing the vast amounts of data generated byIoT devices in urban health systems, leading to high latencyand bandwidth usage issues. The challenges include theintegration of edge devices with existing healthcareinfrastructures, ensuring data security, and improving theresponsiveness of healthcare analytics. The proposedsolution involves leveraging edge computing to processdata closer to the source, thereby reducing latency andbandwidth usage. The paper provides insights into thetechnical aspects of edge computing, emphasizing itscapacity to enhance the efficiency and responsiveness ofhealthcare decision‐making. Case studies demonstrate thesuccessful implementation of edge computing, highlightingits potential to transform urban healthcare delivery byenabling quicker decision‐making and improved patientoutcomes. This research contributes valuable knowledge tothe optimization of smart city healthcare systems throughstrategic edge computing deployment.The paper “IoHT and Edge Computing, Warrants ofOptimal Responsiveness of Monitoring Applications forSeniors: A Case Study” [22] investigates the integration ofthe Internet of Health Things (IoHT) and edge computingto enhance the monitoring and healthcare of seniorpatients. The primary problem addressed is the increasingburden on healthcare systems due to the aging populationand the necessity for more efficient, real‐time healthmonitoring solutions that empower seniors to manage theirhealth independently. The challenges include handlinglarge volumes of diverse, sensitive health data andensuring low‐latency, reliable data processing, andtransmission. The solution proposed involves utilizing IoHTto gather extensive health and environmental data throughconnected devices and sensors, and leveraging edgecomputing to process this data close to its source. Thisapproach reduces latency, enhances real‐time

responsiveness, and maintains data privacy. The paperpresents the RO‐SmartAgeing project, which aims todevelop a system integrating noninvasive sensors, a smartenvironment, and cloud platforms to monitor and assessthe health of seniors. The proposed six‐layer architectureemphasizes local data processing at the edge, time‐sensitive pre‐processing at the fog layer, and advancedanalytics at the cloud layer, providing personalizedhealthcare services and improving the quality of life forsenior patients.The paper “Edge Computing Based Healthcare Systems:Enabling Decentralized Health Monitoring in Internet ofMedical Things” [18] explores the application of edgecomputing in the Internet of Medical Things (IoMT) toaddress challenges in healthcare monitoring, such asdeficient wireless channel and computation resources. Themain problem addressed is the inefficiency of traditionalcloud‐based systems in handling the high volume ofmedical data from numerous mobile users, which leads tohigh latency and energy consumption. The challengesinclude managing medical urgency, Age of Information, andenergy dissipation in wireless body area networks (WBANs)and beyond. The proposed solution involves a cooperativegame for resource allocation within WBANs and anoncooperative game for offloading decisions beyondWBANs, optimizing system‐wide costs by minimizinglatency and energy use. Performance evaluationsdemonstrate the effectiveness of the edge computingparadigm in reducing system‐wide costs and improving theresponsiveness of medical data processing. The paper alsodiscusses future research challenges, such as dynamicgame modeling using machine learning, joint transmissionof energy and information, blockchain‐based electronichealth records for privacy preservation, and intelligentspectrum allocation.

The paper “Internet of Medical Things and EdgeComputing for Improving Healthcare Systems in SmartCities” [4] discusses the integration of edge computingwith IoMT to enhance healthcare services. The problemaddressed is the inefficiency of traditional cloud‐basedsystems in handling the vast amounts of data generated byIoMT devices, leading to latency issues and increasedcosts. The paper identifies several challenges, including theneed for real‐time data processing, high energyconsumption, and maintaining patient privacy and datasecurity. The solution proposed involves leveraging edgecomputing to process data closer to the source, therebyreducing latency and bandwidth usage. Edge devices areused to perform initial data processing and analysis, onlysending critical information to the cloud for furtherprocessing. This approach enhances the responsiveness ofhealthcare applications, reduces the load on centralizedcloud servers, and ensures more efficient use of networkresources.The paper “Edge‐assisted Healthcare Monitoring:Investigating the Role of Edge Computing in Real‐timeMonitoring and Management of Healthcare Data” byRamswaroop Reddy Yellu et al. [47] explores thetransformative impact of edge computing on healthcaremonitoring systems. The primary problem addressed is theinefficiency of traditional centralized systems, which sufferfrom latency and potential privacy issues when processingvast amounts of healthcare data. The challenges includemanaging the complexity of numerous edge devices,ensuring data security and privacy, and achieving seamlessintegration with existing healthcare infrastructure. Thesolution proposed involves leveraging edge computing toprocess data closer to its source, such as medical devicesand sensors, thereby reducing latency, enhancing dataprivacy, and improving scalability and reliability. The paper

highlights several applications of edge‐assisted healthcaremonitoring, including remote patient monitoring, wearablehealth devices, telemedicine, emergency response systems,and predictive maintenance. Implementation strategiesfocus on selecting appropriate edge devices, optimizingdata processing, ensuring robust data storage and security,and maintaining reliable network connectivity. Futureresearch directions include integrating edge computingwith AI and machine learning, addressing scalability andinteroperability, and exploring regulatory and ethicalconsiderations. The paper concludes that edge computingholds significant potential to revolutionize healthcaremonitoring by enabling real‐time data processing andimproving patient outcomes.
7.4 Smart CitiesThe integration of edge computing in smart cityenvironments (as shown in Figure 7.5) offers numerousbenefits and addresses critical challenges associated withbig data analysis and IoT device management. Studiesreveal that edge computing significantly reduces latencyand bandwidth usage by processing data closer to itssource, enhancing real‐time decision‐making and systemefficiency. For instance, the Alternating Direction Methodof Multipliers (ADMM) in edge servers alleviates thecomputational burden on central servers, enabling effectivedistributed data processing. Edge computing frameworks,like the one proposed for situational awareness, captureand process IoT data at the edge, sending only essentialinformation to the cloud, which improves response timesand situational accuracy. Real‐time surveillance and trafficmonitoring benefit from edge computing by reducinglatency and enhancing anomaly detection through localdata processing. However, challenges such as managing

heterogeneous data sources, ensuring data privacy, andmaintaining efficient resource allocation remain. Effectivesolutions involve multilayered architectures, adaptive fault‐tolerant algorithms, and cooperative fog computingsystems to balance computational workloads, energyefficiency, and fairness among nodes. Despite thesechallenges, edge computing demonstrates substantialpotential to optimize urban management, enhance energyefficiency, and improve public safety, making it a pivotaltechnology for the future of smart cities.

Figure 7.5 High‐level view of an IoT‐based smart city.Source: Khan et al. [25]/IEEE.The paper “Incorporating Intelligence in Fog Computingfor Big Data Analysis in Smart Cities” [41] in 2017investigates the integration of edge computing and fog

computing to address the challenges of big data analysis insmart city environments. The problem at hand is theinefficiency and high latency associated with centralizedcloud computing for processing the vast amount of datagenerated by IoT devices in smart cities. Challengesinclude the need for low latency, efficient data distribution,and decentralized processing to manage the sheer volumeof data streams from numerous mobile and static sensors.The proposed solution involves the use of ADMM fordistributed data processing across edge servers, effectivelyreducing the computational burden on centralized cloudservers and enhancing performance. This approach allowsfor the splitting and parallel processing of data, improvingoverall system efficiency and enabling real‐time dataanalysis essential for smart city applications. The studydemonstrates the practical application of this methodthrough dynamic naming conventions for mobile sensors,logical connections, and XML‐based edge object structuresto facilitate effective data management and processing.In 2018, the paper “Edge Computing Framework forEnabling Situation Awareness in IoT Based Smart City” [1]by SK Alamgir Hossain et al. explore the implementation ofan edge computing framework to enhance situationawareness in IoT‐enabled smart cities. The primaryproblem addressed is the inefficiency of traditional cloud‐based systems in processing the vast amounts ofheterogeneous data generated by IoT devices, which leadsto high latency and reduced performance. The challengesinclude handling data from diverse sources in real‐time andensuring low latency while maintaining data privacy. Theproposed solution involves leveraging edge computing toprocess data closer to its source, thus minimizing latencyand bandwidth usage. The framework captures raw IoTdata, processes it at the edge, and sends only the necessaryinformation to the cloud for further analysis and storage.

This method provides situational awareness by generating“situation images” (S‐images) that help decision‐makersunderstand and respond to various urban conditionsefficiently. The framework's effectiveness is demonstratedthrough experiments showing significant improvements inprocessing time and situation detection accuracy,highlighting the potential of edge computing in enhancingsmart city operations.Also in 2018, The paper “Smart City Surveillance at theNetwork Edge in the Era of IoT: Opportunities andChallenges” [10] by Ning Chen and Yu Chen explores theintegration of fog computing to enhance surveillance insmart cities. The primary problem addressed is thedifficulty in processing the vast amounts of data generatedby ubiquitous sensors in urban environments, whichtraditional cloud computing methods struggle with due tohigh latency and bandwidth consumption. The challengesinclude efficiently detecting anomalies in real‐time,ensuring timely decision‐making, and managing theheterogeneity of data sources. The proposed solutionleverages fog computing to process and store data closer tothe source, thereby reducing latency and bandwidth usage.This approach allows for more effective real‐timesurveillance and quicker response times. The paperpresents a case study on urban traffic surveillance,demonstrating how fog computing can improve anomalydetection and vehicle tracking in real‐time. By distributingcomputational tasks across edge devices, the fogcomputing paradigm offers a scalable and efficient solutionfor the latency‐sensitive applications required in smart citysurveillance.In 2020, the paper “Edge Computing with Big Data CloudArchitecture: A Case Study in Smart Building” by CatherineInibhunu and Carolyn McGregor [23] presented aninnovative framework for managing data in smart buildings

using a combination of edge and cloud computingtechnologies. The core problem addressed is the complexityof efficiently handling vast amounts of environmental datagenerated by smart buildings, such as those used forclimatic simulations at facilities like the ACE (AutomotiveCentre of Excellence) in Ontario. The challenges includeensuring real‐time data processing, maintaining dataprivacy and security, and integrating diverse data sourceseffectively. The proposed solution involves a multilayeredarchitecture: Layer 1 handles data acquisition throughsensors; Layer 2 uses edge computing nodes for localprocessing; and Layer 3 leverages cloud computing foradvanced analytics and storage. This architecturefacilitates real‐time data processing, reduces latency, andimproves scalability. The implementation is demonstratedthrough a prototype system at the ACE facility, whichprocesses data from environmental simulations andsupports various applications, including energymanagement and human‐centered research. The paperunderscores the potential of this integrated approach toenhance the functionality and efficiency of smart buildingswhile addressing data management and privacy challenges.The paper titled “A Review on Edge Computing in SmartEnergy by means of a Systematic Mapping Study” [40]explores the role of edge computing in enhancing smartenergy systems. The primary problem addressed is theinefficiency of traditional centralized energy managementsystems in handling the massive data generated by smartenergy devices, leading to high latency and energyconsumption. The challenges include integratingheterogeneous data sources, ensuring real‐time dataprocessing, and maintaining security and privacy indistributed environments. The solution proposed involvesusing edge computing to process data closer to its source,thereby reducing latency, improving response times, and

optimizing energy usage. The paper systematically mapsexisting research, categorizing studies based on publicationtype, research type, and the type of asset developed, suchas architectures, frameworks, methods, or models. Itidentifies gaps in current research and suggests futuredirections for developing edge computing solutions tocreate more efficient, cost‐effective, and real‐timeresponsive smart energy systems.The paper titled “Intelligent System Architecture for SmartCity and its Applications Based Edge Computing” [2]discusses the integration of edge computing into smart cityinfrastructure to enhance the efficiency and responsivenessof urban services. The primary problem addressed is thelimitation of traditional cloud computing in handling thevast amount of data generated by IoT devices in smartcities, which can lead to high latency and bandwidth issues.The challenges identified include managing the distributedand heterogeneous nature of edge devices, ensuring datasecurity and privacy, and optimizing resource allocation tohandle the dynamic and real‐time requirements of smartcity applications. The proposed solution involves a multi‐layered architecture that leverages edge computing toprocess data closer to the source, thereby reducing latencyand improving real‐time decision‐making capabilities. Thisarchitecture includes components for data acquisition,preprocessing, analytics, and service delivery, all designedto operate efficiently at the edge. The paper also highlightscase studies in smart transportation and environmentalmonitoring, demonstrating the practical benefits of theproposed system in improving urban management andsustainability.The paper “Edge Computing for IoT: A Use Case in SmartCity Governance” [33] by Saurabh Nimkar and Dr. M.M.Khanapurkar in 2021 addresses the challenges of managingthe vast data generated by IoT devices in smart cities,

which traditional cloud computing struggles with due tolatency and bandwidth issues. The core problem isefficiently handling and processing this data to supportsmart city applications, such as smart healthcare, energymanagement, and transportation. The main challengesinclude ensuring low latency, reducing network traffic, andmaintaining data privacy and security. The proposedsolution involves implementing a scalable architecture forIoT as a Service to Governance using edge computing. Thisarchitecture decentralizes data processing, bringingcomputational capabilities closer to the data sources, thusreducing latency and improving real‐time responsiveness.The paper discusses various smart city applications wherethis architecture can be beneficial, such as smart grids,transportation systems, and waste management. The edgecomputing framework significantly enhances the efficiencyand effectiveness of smart city governance by enablingreal‐time data processing and decision‐making, therebyfacilitating better service delivery to citizens.The paper “Intelligent Edge Computing for IoT‐BasedEnergy Management in Smart Cities” [29] by Yi Liu et al.explores the integration of edge computing with IoT forefficient energy management in smart cities. The mainproblem addressed is the challenge of managing the vastamounts of data generated by IoT devices in urbanenvironments to optimize energy consumption. Traditionalcloud‐based systems face limitations due to high latencyand bandwidth constraints. The proposed solution involvesdeploying an IoT‐based energy management system withedge computing infrastructure enhanced by deepreinforcement learning (DRL). This system processes datalocally at the network edge, reducing latency andtransmission costs while enabling real‐time decision‐making. The paper presents a comprehensive frameworkand software model, along with an efficient energy

scheduling scheme using DRL. Experimental resultsdemonstrate that the proposed system significantlyoutperforms traditional cloud‐based methods in terms ofenergy cost and delay, highlighting its potential to enhanceenergy management and sustainability in smart cities.The paper “Edge‐Computing Video Analytics for Real‐TimeTraffic Monitoring in a Smart City” [7] by JohanBarthélemy et al. presents an innovative edge‐computingsolution for real‐time traffic monitoring using videoanalytics. The primary problem addressed is theinefficiency and high costs associated with traditionalCCTV networks used for urban traffic monitoring, whichoften involve high bandwidth usage and privacy concerns.The proposed solution involves deploying smart visualsensors that leverage existing CCTV infrastructure andedge computing to process video data locally. This reducesbandwidth requirements and enhances privacy since onlyprocessed metadata, not raw video footage, is transmitted.The sensors employ you only look once (YOLO) V3 forobject detection and simple online and realtime tracking(SORT) for tracking, ensuring real‐time performance. Thesystem's effectiveness is demonstrated through a pilotproject in Liverpool, NSW, Australia, where sensors wereused to monitor pedestrian and vehicle traffic, showingsignificant improvements in data‐processing efficiency andreal‐time responsiveness. The paper concludes thatintegrating edge computing with IoT for smart cityapplications can optimize urban traffic management whileaddressing privacy and scalability challenges.“An Edge Computing Based Public Vehicle System forSmart Transportation” [27] proposes an innovative solutionto enhance public vehicle systems by leveraging edgecomputing to reduce latency and improve rider satisfactionand traffic efficiency. The primary problem addressed is thechallenge of efficiently matching multiple riders to vehicles

while considering personal preferences, which often leadsto high computational overhead and long latency whenhandled by centralized data centers. Key challenges includemanaging the diverse preferences of travelers (e.g., traveltime, distance, and costs) and ensuring real‐time responseto ride requests. The proposed solution, an edgecomputing‐based public vehicle (ECPV) system, introducesan edge computing‐based ride request transmissionmechanism and a tree‐based heuristic matchingmechanism. These mechanisms enable efficient localprocessing of ride requests and dynamic vehiclescheduling, reducing decision‐making delays andcomputational load on central servers. By utilizingunmanned ground vehicles (driverless cars) andstrategically placing depots based on a graph partitioningmethod, the ECPV system achieves higher vehicleoccupancy ratios, lower travel times, and reduced travelcosts. Extensive simulations demonstrate the system'seffectiveness in improving traveler satisfaction and overalltraffic efficiency compared to traditional centralizedapproaches.The paper “Edge Computing and Adaptive Fault‐TolerantTracking Control Algorithm for Smart Buildings: A CaseStudy” [9] explores the integration of edge computing andadvanced control algorithms to enhance energy efficiencyand reliability in smart building environments. The primaryproblem addressed is the high energy consumptionassociated with temperature control in smart buildings andthe frequent failures in control and monitoring systems.The main challenges include managing the large volume ofheterogeneous data from IoT devices and ensuring robustand adaptive control under varying conditions anddisturbances. The proposed solution involves a newadaptive control algorithm based on consensus gametheory, which includes a state prediction module and a data

quality module to improve the accuracy and reliability ofIoT sensors and actuators. This algorithm optimizestemperature control, reduces tracking error, and enhancesenergy efficiency by predicting future states of precisionand adjusting control actions accordingly. The effectivenessof the proposed system is demonstrated through a casestudy, showing significant improvements in maintainingdesired temperature levels and reducing energy costs in asmart building setting.The paper titled “Energy‐Efficient Fair Cooperation FogComputing in Mobile Edge Networks for Smart City” [17]by Yifan Dong et al. explores the challenges of managinghigh computational workloads and network latency insmart cities, especially with the integration of AIalgorithms. The primary problem addressed is the need foran energy‐efficient cooperation policy among fog nodes(FNs) to enhance the QoE for users while ensuring fairnessamong the nodes. The solution proposed involvesconstructing a cooperative fog computing system toprocess offloading workloads across the fog layer. Theauthors formulate a joint optimization problem thatbalances QoE and energy consumption while maintainingfairness among FNs. They prove the convexity of theoptimization problem and design a Fairness CooperationAlgorithm (FCA) to obtain the optimal cooperation policy.Numerical results demonstrate that the FCA quicklyconverges and effectively reduces time overhead andenergy consumption compared to traditional optimizationapproaches. The paper concludes that the proposed systemoutperforms existing algorithms in terms of time cost,energy efficiency, and fairness, making it a viable solutionfor the computational demands of smart cities.The paper “Public Safety in Smart Cities under the EdgeComputing Concept” [31] by Evangelos Maltezos et al.addresses the transformation of cities into smart cities to

improve citizens' living conditions through modernizedurban management and advanced technologies. Theprimary problem identified is the challenge of processingthe vast amounts of data generated by compute‐intensivesecurity and safety applications in real time, whichtraditional cloud computing struggles to handle due to highlatency and limited context awareness. The solutionproposed involves the use of edge computing to processdata closer to its source, thus enabling low‐latency,context‐aware, and geo‐distributed capabilities. The paperintroduces the Distributed Edge Computing IoT Platform(DECIoT), which integrates with smart building sensingsystems and chemical precursor spectroscopic systems.DECIoT utilizes open‐source microservices for datagathering, filtering, security, system management, andalert generation, ensuring efficient and secure processingof public safety data. This platform aims to enhance thesafety and resilience of urban infrastructures and servicesby providing real‐time, actionable insights and improvingthe efficiency of emergency responses in smart cities.
7.5 Internet of ThingsEdge computing enhances IoT applications by reducinglatency and improving data‐processing efficiency bybringing computational resources closer to data sources.This approach significantly benefits real‐time applicationslike mobile gaming and industrial IoT by ensuring lowlatency, reliable data transmission, and efficient handlingof large data volumes. However, challenges includemanaging data offloading and load balancing due to thedistributed nature of IoT devices, limited computingresources at the edge, and ensuring robust security andprivacy. Addressing these challenges involves developingadvanced load‐balancing algorithms, optimizing 5G

network integration, and employing technologies likeblockchain for secure data sharing.The paper “Edge Computing for the Internet of Things: ACase Study” [36] explores the necessity and benefits ofedge computing in enhancing IoT applications, particularlythrough a case study on mobile gaming. The problemaddressed is the high latency and unreliablecommunications often encountered in cloud‐based IoTsystems, which can degrade the user experience. Thechallenges highlighted include the need for low latency,reliable data transmission, and efficient processing of largevolumes of sensor data. The solution proposed involvesleveraging edge computing architectures, which bringcomputational resources closer to the data sources, therebyreducing latency and improving data‐processing efficiency.The paper classifies various edge computing platforms anddemonstrates, through an experimental evaluation, thatedge computing significantly enhances the quality ofexperience for mobile gaming applications. This approachcan be extended to other IoT applications requiring similarreal‐time data‐processing capabilities, showcasing thebroader potential of edge computing in the IoT ecosystem.The paper “Edge Computing in Industrial Internet ofThings: Architecture, Advances and Challenges” [37]explores the integration of edge computing into theIndustrial Internet of Things (IIoT) to enhance efficiencyand performance. The primary challenge addressed is thelatency in decision‐making processes, which is crucial forreal‐time applications in IIoT. The authors propose an edgecomputing architecture to decentralize data processing,thereby reducing latency and bandwidth consumption whileenhancing privacy and security. Key challenges includeefficient data offloading and load balancing due to thedistributed nature of IIoT devices, and the limitedcomputing resources of edge devices. The paper discusses

full and partial data offloading schemes to optimize theseprocesses and highlights the potential of combining edgeartificial intelligence to handle complex computations.Additionally, the paper emphasizes the importance ofsecure data sharing in edge computing environments,suggesting the use of blockchain technology for enhancedsecurity. Future research directions include improvingnetwork slicing for 5G integration, optimizing loadbalancing algorithms, and developing robust securityframeworks to address the unique challenges of IIoT edgecomputing.The paper “Learning IoT in Edge: Deep Learning for theInternet of Things with Edge Computing” [26] explores theintegration of deep learning with edge computing toenhance the processing capabilities of IoT applications. Theprimary challenge addressed is the inefficiency ofcentralized cloud computing in handling the vast amountsof data generated by IoT devices, which often results inhigh latency and bandwidth issues. The proposed solutioninvolves deploying deep learning models partially on edgeservers, closer to the data sources, to reduce the amount ofdata transmitted to the cloud and improve processingefficiency. The paper presents a novel scheduling strategyto optimize the deployment of deep learning tasks in anedge computing environment, maximizing the number oftasks that can be handled while ensuring quality of service.Experimental results demonstrate that this approachsignificantly outperforms traditional methods, enhancingboth the performance and scalability of IoT applications.The paper concludes by suggesting future work indeploying these strategies in real‐world environments tofurther validate their effectiveness.

7.6 RetailEdge computing is revolutionizing customer experiencesand operational efficiency (as shown in Figure 7.6).Retailers implement edge computing to manage inventorysmarter and personalize customer shopping experiences.For instance, smart shelves equipped with weight sensorsand cameras can track inventory levels in real time,automatically signaling replenishment needs. Additionally,edge computing enables the analysis of customer trafficand buying patterns directly at the store level, allowing forimmediate promotional adjustments and personalizedcustomer interactions. This localized data processing helpsretailers respond more dynamically to consumer behavior,enhancing customer satisfaction and increasing sales. Thepaper “Intelligent Communication Between IoT Devices onEdges in Retail Sector” [39] proposes the Smart Shop(SmSH) architecture designed to enhance the shoppingexperience by integrating IoT devices and edge computingin the retail sector. The SmSH architecture leveragestechnologies like RFID, NFC, Bluetooth, and low‐powerwide‐area network (LPWAN) to facilitate seamlesscommunication between IoT devices, enabling real‐timedata processing and personalized customer interactions. Byprocessing data at the edge, the architecture reduceslatency, enhances security, and improves the efficiency ofstore operations, such as inventory management andcustomer assistance. The paper discusses theimplementation phases of SmSH, including customeridentification, product selection, and payment, whilehighlighting the role of edge computing in ensuring fastand secure data handling. Additionally, the architecture'sadaptability allows for easy extension to other businessdomains, making it a versatile solution for modern retailchallenges.

Figure 7.6 High‐level view of an IoT‐based smart retail.Source: Perera et al. [34]/ACM, Inc.The paper “Survey on Multi‐Access Edge Computing forInternet of Things Realization” [35] provides acomprehensive overview of how multi‐access edgecomputing (MEC) can enhance the realization of IoTapplications. It discusses the significant role of MEC inextending cloud computing capabilities to the edge of thenetwork, thereby reducing latency, improving bandwidthutilization, and enhancing the overall performance of IoTsystems. The survey highlights key application scenarios

such as smart homes, healthcare, autonomous vehicles, andindustrial IoT, where MEC can offer substantial benefits byprocessing data closer to the source, ensuring real‐timeoperations, and improving scalability. However, theintegration of MEC with IoT also presents challenges,including managing scalability, ensuring reliablecommunication, efficient computation offloading, andaddressing security, privacy, and trust issues. The paperconcludes by summarizing the state‐of‐the‐art technologiesand future research directions necessary for the successfulintegration of MEC in IoT environments, emphasizing theimportance of continued innovation to overcome thesechallenges and fully realize the potential of MEC in the IoTecosystem.
7.7 Autonomous VehiclesEdge computing significantly enhances the performance ofconnected and autonomous vehicles (CAVs) by reducinglatency and improving data‐processing efficiency (as shownin Figure 7.7). Frameworks like OpenVDAP and VECFrameaddress the limitations of onboard computation byoffloading intensive tasks to nearby edge servers,optimizing resource utilization, and ensuring low‐latencycommunication. However, challenges such as managingcomputational overhead, ensuring data privacy andsecurity, and handling large volumes of sensor data persist.Collaborative learning and federated learning frameworks,such as CLONE, leverage edge computing to maintain dataprivacy while improving prediction accuracy. Solutions likeSafeCross and collaborative autonomous driving framework(CCAD) enhance vehicle safety and traffic management byproviding real‐time warnings and improving perceptioncapabilities through edge‐based data processing. Despitethese advancements, the field faces ongoing challenges in

efficient resource allocation, energy consumption, andnetwork stability, necessitating continued research anddevelopment to fully realize the potential of edgecomputing in CAVs.

Figure 7.7 High‐level view of edge computing forautonomous vehicles.Source: Liu et al. [28]/IEEE.“OpenVDAP: An Open Vehicular Data Analytics Platform forCAVs” [50] presents a comprehensive edge computingframework designed to address the computational andlatency challenges faced by CAVs. The primary problemtackled is the inefficiency of onboard computation inhandling data‐intensive services such as real‐timediagnostics, advanced driver‐assistance systems, and third‐party applications due to limited computing resources.Challenges include ensuring low latency, managingcomputational overhead, and preserving security andprivacy in a dynamic vehicular environment. OpenVDAP

offers a solution by leveraging a full‐stack edge computingplatform that includes an onboard heterogeneouscomputing unit, a secure and privacy‐preserved operatingsystem (EdgeOSv), and an edge‐aware application library(libvdap). The framework dynamically offloadscomputational tasks to nearby edge servers or the cloud,optimizing resource utilization and reducing latency.OpenVDAP's open‐source nature encourages communitycollaboration, allowing researchers to deploy and evaluateapplications in real‐world settings, thus enhancing theperformance and reliability of CAV systems.“Vehicular and Edge Computing for Emerging Connectedand Autonomous Vehicle Applications” [6] addresses thecomplexities and computational demands of CAVs. Theproblem focuses on the need for optimal computingresource allocations and efficient architectures to handlethe real‐time data from advanced sensors such as cameras,radars, and LiDARs. Challenges include ensuring lowlatency, high accuracy, reliability, and managing powerconsumption under varying conditions. The solutionproposed involves leveraging edge computing to offloadintensive tasks from in‐vehicle systems to roadside unitswith powerful computing capabilities, thereby enhancingperformance and reducing latency. The paperdemonstrates through preliminary experiments that taskpartitioning and offloading strategies can significantlyimprove the efficiency and effectiveness of vehicularapplications, providing a feasible approach to meet theevolving computational needs of CAVs withoutcompromising safety or performance.“Collaborative Learning on the Edges: A Case Study onConnected Vehicles” [30] investigates the potential ofconnected vehicles as a platform for edge computing tooffer new services like real‐time diagnostics and advanceddriver assistance. The key problem addressed is the high

computational and memory resource demands of machinelearning algorithms on resource‐constrained edge devices.Challenges include handling large datasets for training,preserving privacy, and reducing latency while maintainingsecurity. The solution proposed is CLONE, a collaborativelearning framework based on federated learning and longshort‐term memory networks. This approach allowsvehicles to train models locally with their data and shareparameter updates with a central edge server, enhancingprediction accuracy while reducing training time andmaintaining data privacy. The case study on predictingelectric vehicle battery failures demonstrated the efficacyof this method, highlighting improved prediction accuracyby including driver behavior metrics and the superiorperformance of LSTMs over other models like randomforests and gradient‐boosting decision trees.“VECFrame: A Vehicular Edge Computing Framework forConnected Autonomous Vehicles” [42] presents a novelframework aimed at addressing the limitations of currentautonomous vehicle systems that rely heavily on cloudcomputing. The problem identified is the high latency andnetwork congestion associated with cloud‐based solutions,which hinder real‐time object detection and dataprocessing essential for autonomous driving. The keychallenges include the efficient transfer and fusion of largevolumes of sensor data from multiple vehicles, ensuringscalability, adaptability, and maintaining low‐latencycommunication. VECFrame proposes a solution byleveraging edge computing to perform cooperative objectdetection and data fusion at the edge of the network, closerto the vehicles. This framework utilizes modular containersfor data dissemination, enabling a scalable and platform‐independent approach. Real‐world experimentsdemonstrate that VECFrame significantly improves theaccuracy of traffic condition perception, enhances object

detection capabilities, and increases data throughput by40%–350% compared to nonedge solutions, thus providinga robust and efficient infrastructure for connected andautonomous vehicles.“Offloading Autonomous Driving Services via EdgeComputing” [13] addresses the critical challenge ofprocessing massive amounts of sensor data in real time toensure safe and reliable decisions in autonomous driving.The main problem is the insufficient onboard computationalresources of autonomous vehicles to meet these demands.The paper proposes a novel solution involving theoffloading of computationally intensive tasks to roadsideunits and the cloud, thereby leveraging edge computing.This approach utilizes an integer linear programmingformulation for offline optimization of the schedulingstrategy and a fast heuristics algorithm for onlineadaptation. Experimental results from both synthetic taskgraphs and real‐world deployments show significantimprovements in system performance, including reducedaverage latency by 34% and enhanced localization accuracyby up to 7.6 times. The proposed method effectivelybalances the computational load between onboard units,edge servers, and cloud resources, addressing thechallenges of bandwidth limitations and network instability.“Vehicle Selection and Resource Optimization forFederated Learning in Vehicular Edge Computing” [46]addresses the efficient processing of data in vehicular edgecomputing (VEC) using federated learning (FL). The mainproblem tackled is the significant energy consumption andtime required for model training and transmission,compounded by the variability in vehicles' computationalcapabilities and data quality. The key challenges includeselecting appropriate vehicles for FL tasks and optimizingresource allocation under the constraints of learning timeand energy consumption. The paper proposes a min–max

optimization approach that dynamically selects vehiclesbased on their data quality and computational capabilitieswhile minimizing overall system cost through a greedyalgorithm. This involves decomposing the optimizationproblem into two subproblems: resource allocation, solvedusing the Lagrangian dual method and subgradientprojection, and local model accuracy optimization,addressed with an adaptive harmony search algorithm.Simulations demonstrate that the proposed algorithmseffectively balance cost and resource optimization,achieving significant performance improvements in FL forVEC scenarios.“To Turn or Not To Turn, SafeCross is the Answer” [45]addresses the significant challenge of blind areas in left‐turn scenarios at intersections, which pose a considerablethreat to driver safety and can lead to fatal collisions.Despite advancements in vision‐based perceptiontechnologies that enable autonomous driving systems toachieve a 360‐degree view and avoid most blind areas, theissue persists when an opposing road is blocked by anothervehicle at the intersection. To tackle this problem, theauthors propose SafeCross, a framework designed tomonitor intersections and provide real‐time warnings toleft‐turning vehicles when another vehicle is detected inthe blind area. The framework comprises four maincomponents: video preprocessing, video classification, few‐shot learning, and model switching. These componentswork together to train a model that identifies blind areas,adapts to different weather conditions, and providesaccurate warnings. Experimental results demonstrate thatSafeCross enhances vehicle safety and increases left‐turntraffic throughput by 50%, highlighting its effectiveness inmitigating blind area risks.“FAIR: Towards Impartial Resource Allocation forIntelligent Vehicles with Automotive Edge Computing” [44]

explores the challenges and solutions related to resourceallocation in intelligent vehicle systems using edgecomputing. The main problem addressed is the inefficientand often biased allocation of computational resources,which can hinder the performance and safety of intelligentvehicles. The paper highlights the challenges of ensuringfair resource distribution in environments with diverse andcompeting demands. It proposes a novel framework, FAIR(Fair and Impartial Resource Allocation), which leveragesedge computing to optimize the allocation process. Thesolution involves advanced algorithms that dynamicallyadjust resource distribution based on real‐time data andpredefined fairness criteria, ensuring that all vehiclesreceive adequate computational power for critical taskssuch as navigation, obstacle detection, and communication.The proposed framework is validated through extensivesimulations and real‐world experiments, demonstratingsignificant improvements in both resource utilizationefficiency and the overall performance of intelligentvehicular networks.“Towards C‐V2X Enabled Collaborative AutonomousDriving” [21] investigates the limitations of single‐agentautonomous vehicles, which rely solely on their onboardsensors, leading to frequent accidents due to restrictedsensing coverage. The primary problem identified is theinsufficient safety and reliability of current autonomoussystems operating independently. The key challengesinclude limited perception angles, missed detection ofsafety‐critical information, and difficulties in lane‐keepingunder adverse conditions. The authors propose a C‐V2X‐enabled CCAD, which employs cellular vehicle‐to‐everything (C‐V2X) technology to enable communicationbetween vehicles and infrastructure, thus enhancing theperception capabilities through multiple angles. Theframework incorporates edge computing for real‐time data

processing and has demonstrated significant improvementsin lane‐keeping accuracy and overall vehicle safety througha case study. This collaborative approach effectivelyaddresses the sensing limitations of single‐agent systems,providing a robust solution for safer autonomous driving.
7.8 Summary and Practice
7.8.1 SummaryThis chapter focuses on the transformative impact of edgecomputing across various industries, includingmanufacturing, IoT, retail, healthcare, telecommunications,autonomous vehicles, and smart cities. Edge computing, byprocessing data closer to its source, enhances operationalefficiency, decision‐making, and innovation. Inmanufacturing, it enables predictive maintenance and real‐time quality control. For IoT, it reduces latency andimproves system efficiency and security. In retail, it aids inpersonalized services and inventory management.Healthcare benefits from real‐time patient monitoring anddiagnostics. Telecommunications leverage edge computingto optimize network performance and support emergingtechnologies like 5G and VR. Autonomous vehicles rely onit for real‐time decision‐making, while smart cities utilize itfor efficient resource management and enhanced publicsafety. Through detailed case studies, this chapterelucidates the practical applications, challenges, andbenefits of edge computing, underscoring its critical role inmodern technological advancements and industryimprovements.
7.8.2 Practice Questions

1. How does edge computing improve operationalefficiency in the manufacturing sector?

2. What are the key benefits of edge computing for IoTecosystems, particularly in terms of latency and datasecurity?3. Describe the role of edge computing in enhancing real‐time patient monitoring and diagnostics in healthcare.4. What are the primary challenges of implementing edgecomputing in autonomous vehicles, and how are theyaddressed?5. Discuss the impact of edge computing on public safetyand resource management in smart cities.
7.8.3 Course Projects

1. Analyze and present a case study of a successful edgecomputing implementation in a specific industry.2. Develop a predictive maintenance system formanufacturing using edge computing, and evaluate itsperformance in reducing downtime and improvingproductivity.3. Investigate the integration of edge computing with IoTdevices in a healthcare setting, focusing on real‐timepatient monitoring and data security.4. Create a simulation model to compare the performanceof edge computing vs. cloud computing in processingIoT data for autonomous vehicles.5. Research and analyze the role of edge computing inenhancing 5G network performance and supportingemerging applications like AR and VR.

Chapter 7 Suggested Papers
 1 Latif U Khan et al. “Edge‐computing‐enabled smartcities: A comprehensive survey”. In: IEEE Internet of

Things Journal 7. 10 (2020), pp. 10200–10232. 2 Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborativelearning on the edges: A case study on connectedvehicles”. In: 2nd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 19), 2019. 3 Shaoshan Liu et al. “Edge computing for autonomousdriving: Opportunities and challenges”. In: Proceedings
of the IEEE 107. 8 (2019), pp. 1697–1716.

References 1 S K Alamgir Hossain, Md Anisur Rahman, and M AnwarHossain. “Edge computing framework for enablingsituation awareness in IoT based smart city”. In: Journal
of Parallel and Distributed Computing 122 (2018), pp.226–237. 2 Mehdhar Al‐gaashani et al. “Intelligent systemarchitecture for smart city and its applications basededge computing”. In: 2020 12th International Congress
on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT). IEEE, 2020, pp. 269–274. 3 Ali Alnoman. “Edge computing services for smart cities:A review and case study”. In: 2021 International
Symposium on Networks, Computers and
Communications (ISNCC). IEEE, 2021, pp. 1–6.

 4 Muna Alrazgan. “Internet of medical things and edgecomputing for improving healthcare in smart cities”. In:
Mathematical Problems in Engineering 2022. 1 (2022),p. 5776954. 5 Mohammed Alrowaily and Zhuo Lu. “Secure edgecomputing in IoT systems: Review and case studies”. In:
2018 IEEE/ACM Symposium on Edge Computing (SEC).IEEE, 2018, pp. 440–444. 6 Sabur Baidya et al. “Vehicular and edge computing foremerging connected and autonomous vehicleapplications”. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6. 7 Johan Barthélemy et al. “Edge‐computing video analyticsfor real‐time traffic monitoring in a smart city”. In:
Sensors 19. 9 (2019), p. 2048. 8 Abhiraj Biswas, Ayush Jain, and Mohana. “Survey onedge computing–key technology in retail industry”. In:
Computer Networks and Inventive Communication
Technologies: Proceedings of the 3rd ICCNCT 2020.Springer, 2021, pp. 97–106. 9 Roberto Casado‐Vara et al. “Edge computing andadaptive fault‐tolerant tracking control algorithm forsmart buildings: A case study”. In: Cybernetics and
Systems 51. 7 (2020), pp. 685–697.

10 Ning Chen and Yu Chen. “Smart city surveillance at thenetwork edge in the era of IoT: Opportunities andchallenges”. In: Smart Cities: Development and
Governance Frameworks (2018), pp. 153–176.

11 Baotong Chen et al. “Edge computing in IoT‐basedmanufacturing”. In: IEEE Communications Magazine 56.

9 (2018), pp. 103–109.
12 Gianfranco Ciccarella et al. “Edge cloud computing intelecommunications: Case studies on performanceimprovement and TCO saving”. In: 2019 4th

International Conference on Fog and Mobile Edge
Computing (FMEC). IEEE, 2019, pp. 113–120.

13 Mingyue Cui et al. “Offloading autonomous drivingservices via edge computing”. In: IEEE Internet of
Things Journal 7. 10 (2020), pp. 10535–10547.

14 Thiago Pereira Da Silva et al. “Fog computing platformsfor smart city applications: A survey”. In: ACM
Transactions on Internet Technology 22. 4 (2022), pp. 1–32.

15 Sujata Dash et al. “Edge and fog computing inhealthcare–A review”. In: Scalable Computing: Practice
and Experience 20. 2 (2019), pp. 191–206.

16 Rushit Dave, Naeem Seliya, and Nyle Siddiqui. “Thebenefits of edge computing in healthcare, smart cities,and IoT”. In: arXiv preprint arXiv:2112.01250 (2021).
17 Yifan Dong et al. “Energy‐efficient fair cooperation fogcomputing in mobile edge networks for smart city”. In:

IEEE Internet of Things Journal 6. 5 (2019), pp. 7543–7554.
18 Peiran Dong et al. “Edge computing based healthcaresystems: Enabling decentralized health monitoring inInternet of medical Things”. In: IEEE Network 34. 5(2020), pp. 254–261.
19 Mohammed S Elbamby et al. “Wireless edge computingwith latency and reliability guarantees”. In: Proceedings

of the IEEE 107. 8 (2019), pp. 1717–1737.

20 Shahid Sultan Hajam and Shabir Ahmad Sofi. “IoT‐Fogarchitectures in smart city applications: A survey”. In:
China Communications 18. 11 (2021), pp. 117–140.

21 Y He et al. “Towards C‐V2X enabled collaborativeautonomous driving”. In: IEEE Transactions on Vehicular
Technology 72. 12 (2023), pp. 15450–15462. DOI:10.1109/TVT.2023.3299844.

22 Marilena Ianculescu et al. “IoHT and edge computing,warrants of optimal responsiveness of monitoringapplications for seniors. A case study”. In: 2019 22nd
International Conference on Control Systems and
Computer Science (CSCS). IEEE, 2019, pp. 655–661.

23 Catherine Inibhunu and Carolyn McGregor. “Edgecomputing with big data cloud architecture: A case studyin smart building”. In: 2020 IEEE International
Conference on Big Data (Big Data). IEEE, 2020, pp.3387–3393.

24 Balaram Yadav Kasula. “The role of edge computing inreal‐time analytics for smart city healthcareapplications”. In: Transaction on Recent Developments in
Industrial IoT 9. 9 (2017), pp. 1–7.

25 Latif U Khan et al. “Edge‐computing‐enabled smartcities: A comprehensive survey”. In: IEEE Internet of
Things Journal 7. 10 (2020), pp. 10200–10232.

26 He Li, Kaoru Ota, and Mianxiong Dong. “Learning IoT inedge: Deep learning for the Internet of Things with edgecomputing”. In: IEEE Network 32. 1 (2018), pp. 96–101.
27 J Lin et al. “An edge computing based public vehiclesystem for smart transportation”. In: IEEE Transactions

on Vehicular Technology 69. 11 (2020), pp. 12635–12651. DOI: 10.1109/TVT.2020.3028497.
28 Shaoshan Liu et al. “Edge computing for autonomousdriving: Opportunities and challenges”. In: Proceedings

of the IEEE 107. 8 (2019), pp. 1697–1716.
29 Yi Liu et al. “Intelligent edge computing for IoT‐basedenergy management in smart cities”. In: IEEE Network33. 2 (2019), pp. 111–117.
30 Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborativelearning on the edges: A case study on connectedvehicles”. In: 2nd USENIX Workshop on Hot Topics in

Edge Computing (HotEdge 19), 2019.
31 E Maltezos et al. “Public safety in smart cities under theedge computing concept”. In: 2021 IEEE International

Mediterranean Conference on Communications and
Networking (MeditCom). 2021, pp. 88–93. DOI:10.1109/MeditCom49071.2021.9647550.

32 Garima Nain, K K Pattanaik, and G K Sharma. “Towardsedge computing in intelligent manufacturing: Past,present and future”. In: Journal of Manufacturing
Systems 62 (2022), pp. 588–611.

33 Saurabh Nimkar and M M Khanapurkar. “Edgecomputing for IoT: A use case in smart city governance”.In: 2021 International Conference on Computational
Intelligence and Computing Applications (ICCICA). IEEE,2021, pp. 1–5.

34 Charith Perera et al. “Fog computing for sustainablesmart cities: A survey”. In: ACM Computing Surveys
(CSUR) 50. 3 (2017), pp. 1–43.

35 Pawani Porambage et al. “Survey on multi‐access edgecomputing for Internet of Things realization”. In: IEEE
Communications Surveys & Tutorials 20. 4 (2018), pp.2961–2991.

36 Gopika Premsankar, Mario Di Francesco, and TarikTaleb. “Edge computing for the Internet of Things: Acase study”. In: IEEE Internet of Things Journal 5. 2(2018), pp. 1275–1284.
37 Tie Qiu et al. “Edge computing in Industrial Internet ofThings: Architecture, advances and challenges”. In: IEEE

Communications Surveys & Tutorials 22. 4 (2020), pp.2462–2488.
38 Partha Pratim Ray, Dinesh Dash, and Debashis De.“Edge computing for Internet of Things: A survey, e‐healthcare case study and future direction”. In: Journal

of Network and Computer Applications 140 (2019), pp.1–22.
39 M Saravanan and N C Srinidhi Srivatsan. “Intelligentcommunication between IoT devices on edges in retailsector”. In: Advances in Information and Communication

Networks: Proceedings of the 2018 Future of
Information and Communication Conference (FICC), Vol.2. Springer, 2019, pp. 546–562.

40 Inés Sittón‐Candanedo et al. “A review on edgecomputing in smart energy by means of a systematicmapping study”. In: Electronics 9. 1 (2019), p. 48.
41 Bo Tang et al. “Incorporating intelligence in fogcomputing for big data analysis in smart cities”. In: IEEE

Transactions on Industrial Informatics 13. 5 (2017), pp.2140–2150.

42 S Tang et al. “VECFrame: A vehicular edge computingframework for connected autonomous vehicles”. In: 2021
IEEE International Conference on Edge Computing
(EDGE). 2021, pp. 68–77. DOI:10.1109/EDGE53862.2021.00019.

43 Jumyung Um et al. “Edge computing in smartproduction”. In: Advances in Service and Industrial
Robotics: Proceedings of the 28th International
Conference on Robotics in Alpe‐Adria‐Danube Region
(RAAD 2019) 28. Springer, 2020, pp. 144–152.

44 H Wang, J Xie, and M M A Muslam. “FAIR: Towardsimpartial resource allocation for intelligent vehicles withautomotive edge computing”. In: IEEE Transactions on
Intelligent Vehicles 8. 2 (2023), pp. 1971–1982. DOI:10.1109/TIV.2023.3234888.

45 B Wu et al. “To turn or not to turn, safecross is theanswer”. In: 2022 IEEE 42nd International Conference
on Distributed Computing Systems (ICDCS). 2022, pp.414–424. DOI: 10.1109/ICDCS54860.2022.00047.

46 H Xiao et al. “Vehicle selection and resourceoptimization for federated learning in vehicular edgecomputing”. In: IEEE Transactions on Intelligent
Transportation Systems 23. 8 (2022), pp. 11073–11087.DOI: 10.1109/TITS.2021.3099597.

47 Ramswaroop Reddy Yellu, Praveen Thuniki, and MohanRaparthi. “Edge‐assisted Healthcare Monitoring:Investigating the role of edge computing in real‐timemonitoring and management of healthcare data”. In:
African Journal of Artificial Intelligence and Sustainable
Development 4. 1 (2024), pp. 70–78.

48 Wenjin Yu et al. “Edge computing‐assisted IoTframework with an autoencoder for fault detection inmanufacturing predictive maintenance”. In: IEEE
Transactions on Industrial Informatics 19. 4 (2022), pp.5701–5710.

49 Chaoyang Zhang and Weixi Ji. “Edge computing enabledproduction anomalies detection and energy‐efficientproduction decision approach for discrete manufacturingworkshops”. In: IEEE Access 8 (2020), pp. 158197–158207.
50 Qingyang Zhang et al. “OpenVDAP: An open vehiculardata analytics platform for CAVs”. In: 2018 IEEE 38th

International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1310–1320.

51 Yongli Zhao et al. “Edge computing and networking: Asurvey on infrastructures and applications”. In: IEEE
Access 7 (2019), pp. 101213–101230.

Note* This chapter is contributed by Yuankai He.

8
Privacy and Bias in Edge Computing*
As an emerging computing paradigm, edge computing hasmade a significant impact on modern computing systemsand modern applications, introducing a range of ethical andsocial implications. In this chapter, we will explore two keytopics, privacy and bias, which are closely intertwined withthese ethical and social concerns.The first major ethical and social consideration is privacy,which becomes a critical issue whenever data containingsensitive information is shared by its owner in any type ofapplications. In edge computing scenarios, edge serverprocess large amounts of data offloaded from end devices,raising substantial privacy concerns. However, edgecomputing also offers a new avenue and unique opportunityto design, implement, and deploy privacy‐preservingmechanisms that avoid sending sensitive data to morepowerful and more publicly accessible cloud servers. In thischapter, we will present a set of major privacy concernsassociated with edge computing and explore variousprivacy‐preserving solutions.The second ethical and social consideration is bias. Due tothe localized nature of edge computing, data available atthe a single edge node may be significant biased, which canlead to potentially misleading conclusions when they areapplied in other contexts. Furthermore, edge computingoften relies on various machine learning (ML) and deeplearning algorithms for autonomous decision‐making, andthese algorithms could be inherently biased. In thischapter, we will analyze various types of biases, their

causes, their impact on edge computing algorithms, andtechniques to mitigate the effects of these biases.
8.1 Privacy in Edge ComputingModern applications, such as large‐scale IoT systems (IoT),connected autonomous vehicles, and smart communities,generate, collect, and analyze vast amounts of data. Edgecomputing has emerged as a critical paradigm that extendsclose services to support the efficient performance of theseapplications. Unlike Cloud computing, edge computingprocesses data closer to its sources, significantly enhancingefficiency by reducing communication overhead and delay.Privacy ensures freedom from unauthorized surveillanceand documentation, requiring service providers in digitalenvironments to handle personal data responsibly,safeguard identities, and keep actions untraceable [54].While edge computing inherently reduces privacy concernscompared to cloud computing, since the data does not needto be transferred and processed at a centralized cloud, itstill presents significant privacy concerns. This isparticularly true given the sensitive nature of the datainvolving personal information, such as user identities,locations, activities, and behaviors [59]. These privacyconcerns can deter users from fully adopting, utilizing, andbenefiting from advanced applications. Therefore, it isessential to design and implement privacy‐preservingtechniques that address these concerns. Edge computing,being proximate to the data source and having sufficientresources to process a huge amount of data, is ideallysuited for deploying such privacy‐preserving mechanisms[60].In Sections 8.1.1 and 8.1.4, we first explore the specificprivacy concerns associated with edge computing and thenpresent various types of privacy. Finally, we will discuss a

set of effective privacy‐preserving solutions and highlightseveral existing edge‐based implementations.
8.1.1 Privacy Concerns at Edge ComputingThe rapid advancement of technology, coupled with thewidespread use of big data and the Internet of Things (IoT),has led to significant privacy breaches impacting bothindividuals and businesses [3]. Information privacy, definedas the right to control how personal data is collected andutilized, enables individuals or groups to prevent theirpersonal information from being disclosed without theirconsent. One of the major privacy concerns today is therisk of personal data being identified during itstransmission, storage, and analysis, leading tounauthorized access and misuse [27]. The implementationof regulations like the European General Data ProtectionRegulation [25] and the ongoing digitization of varioussectors have highlighted the importance of dataanonymization in data processing and analysis [56].In edge computing, where user data is often outsourced tothird‐party edge services, there is a clear separationbetween data ownership and control. This separationincreases the risk of data loss, leakage, and unauthorizeddata operations, underscoring the need for strong datasecurity and privacy‐preserving mechanisms [54].Additionally, the architectural design of edge computing,which consists of multiple layers, including cloud, edge,and end devices, introduces several new privacy concerns.Below is a list of these concerns.

Distributed data storage: Unlike centralized systems,edge computing distributes data across multiplelocations. This segmentation complicates the assuranceof data integrity and increases the risk of privacy

breaches, such as data leakage or unauthorizedmodifications across different edge nodes.
Retention of identifying information: Untrustedservers, providers, and operators at the edge mayretain user‐identifiable information even after servicerelationships have ended. This retention practiceexacerbates privacy concerns, highlighting thedifficulty of securing outsourced data in decentralizedenvironments [4].
Vulnerability to honest But curious adversaries: Inedge computing, sensitive information transmitted toedge servers is vulnerable to privacy breaches. Thisvulnerability is particularly concerning given thepresence of “honest but curious” adversaries,authorized entities that exploit their access to gathersensitive information for personal interests.
Predictability of user locations: Because edgecomputing brings processing closer to the data source,users' location data often becomes more predictable.This predictability necessitates stringent privacyprotections to prevent unauthorized tracking andexploitation.
Decentralized edge administration: Thedecentralized and dispersed nature of edge devicescomplicates centralized control, increasing thenetwork's vulnerability to cyberattacks. These attackscan lead to privacy breaches, data theft, and systemhijacking, causing widespread disruption. If an edgenode is compromised, attackers can exploit thesevulnerabilities to access and misuse sensitive personalinformation.
Privacy risk in data transmission: Recent researchhighlights the privacy concerns that arise during the

collaboration between cloud, edge, and end devices[59], particularly when raw data such as texts andimages are transmitted. This process introduces therisk of data leakage during transmission, which cancompromise sensitive information.
Uncontrollable data sharing: Once data istransferred to edge servers, the original data ownerloses control over its sharing. Entities providing edgeservices may share consumer data with externalorganizations for purposes such as behavior analysisand market expansion, thereby increasing privacy risks.

8.1.2 Various Forms of PrivacyThe discussion above presents privacy concerns in edgecomputing‐related systems and applications. Theseconcerns affect various aspects of privacy, such as dataprivacy, location privacy, identity privacy, andcommunication privacy. Among these, data privacy,location privacy, and identity privacy are currently majorones in the edge computing assisted applications. In thefollowing text, we define each of these key privacy forms.
8.1.2.1 Data PrivacyData privacy in the context of edge computing refers to theprotection of sensitive information that is stored,processed, or transmitted across decentralized edgeservers and end devices. Ensuring the user data againstprivacy leaks is essential, particularly as edge computingsupports big data applications in sectors like healthcare,banking, and crowd‐sourcing, where large volumes ofpersonal data are generated and require stringent privacymeasures [54]. For example, as shown in the left side ofFigure 8.1, smart home security systems use cameras tomonitor user movements and activities; Personal finance

apps track sensitive financial data; and voice assistantsoftware may continually record and analyze voice data.Ensuring data privacy is crucial due to the challengesposed by the distributed nature of edge servers, which areharder to monitor than centralized data centers [17]. Thefrequent transfer of data between devices and edge serversincreases the risk of exposure, especially when data ismigrated across different servers to optimize userexperience.
8.1.2.2 Location PrivacyLocation privacy is a significant concern as numerous webservices and applications require users to share theirlocation to access certain functionalities. As indicated inthe middle of Figure 8.1, examples include publictransportation systems apps that collect user locations;ride‐sharing platform that tracks user movements; andfitness tracker that provides many location‐aware services.The potential leakage of this sensitive information poses areal and considerable risk to users [7]. The proximity ofend devices to edge servers not only facilitates taskoffloading for optimized performance but also significantlyrisks location privacy, as curious edge servers can infer theproximity of end users from their connection points. Asusers move and their devices switch between servers, thecommunication paths can reveal their movement patternsto unauthorized servers, compromising their locationprivacy [17]. Users might unintentionally or unknowinglyconsent to share their location through pop‐up requests,without fully understanding the potential consequences,enabling diverse applications, posing significant risks bypotentially exposing users' geo‐locations. This exposure canthreaten financial, entertainment, professional, andconfidential aspects of life, leading to risks such ashijacking, blackmail, or ransom [54].

8.1.2.3 Identity PrivacyIdentity privacy in edge computing refers to the protectionof personal information during interactions that requireidentity verification, such as filling out online forms, whereinformation stored on edge servers is accessed forauthorization purposes, linking to sensitive details likepayment data [17]. With the rise of tactile Internet and IoT,safeguarding identity becomes crucial as it involves billionsof entities and people, using methods such as knowledge‐based (username), possession‐based (random numbergenerator), inherence‐based (biometric like facialrecognition), or physical unclonable function (PUF) foridentity verification, as indicated in the right side of Figure8.1. An adversary who replicates a user identity couldaccess all associated data, posing risks of privacy violationsthrough tampering, cloning, and masquerading [54].

Figure 8.1 Privacy forms.

8.1.3 Introduction of Privacy‐Preserving
TechniquesTo tackle privacy concerns in edge computing, this sectionsurveys several important methods designed to protectdata, location, and identity privacy, with an emphasis ontechniques such as ‐anonymity, differential privacy,federated learning, and homomorphic encryption. Thesemethods help ensure that sensitive information issafeguarded against unauthorized access and potentialdata breaches. Each technique offers a unique approach toenhancing privacy, collectively providing robust defensesagainst privacy risks in edge computing environments.
8.1.3.1 Data AnonymizationData anonymization is a practical and widely used solutionfor protecting user privacy in data publishing. It involvesthe removal of any information that can uniquely, directly,or indirectly identify someone from the data [38]. Useridentifiers include direct identifiers, such as names,addresses, and photos, which can directly identify a user,and indirect identifiers, such as ages, salaries, andoccupations, which can identify a user by linking with otheravailable datasets or information [55], such information isremoved from the data before its anonymization [38]. Manyedge computing assisted applications collect extensive datato improve their services and develop new products, butthis practice significantly increases the risk of data loss oraccidental data breaches [55]. Various anonymizationtechniques have been proposed and implemented fordifferent scenarios, making anonymization a practicalsolution for preserving user privacy in data publishing [38].

Data masking: Data masking refers to a method ofchanging characters in the selected attribute(s) to adifferent character, making the variable inconceivable

[44]. This involves using character modificationtechniques such as shuffling, substitution, andencryption to hide data [55]. For example, emailaddress “John.Doe123@example.com” and apply thedescribed data masking technique, the modified emailaddress would be “Zzzz.Zzz111@zxxxxzz.zzz.”
Generalization: Generalization is the process ofreplacing specific values with less‐specific butsemantically consistent values [44], often by alteringdata into a set of ranges, to make it unidentifiable [55].This technique applies at the cell level, where someoriginal values are maintained with added confusion,thereby increasing the difficulty for an attacker to infersensitive data [44]. For example, the original datashowing “John Smith, 29, US$ 50,000” can begeneralized to “Person 1, 20–30, US$ 40,000–US$60,000.” This replaces specific values with ranges,making the data less identifiable while maintainingsemantic consistency.
Suppression: Suppression refers to the removal of anentire part of data, such as a column or tuple, in adataset by changing the value to one that does not havemeaning [44]. This should occur whenever an attributeis irrelevant, unnecessary for analysis, or impossible toanonymize in any other way [40]. An example isreplacing the original data with “****.” Suppressionconceals information by deleting it, ensuring thatrecords in the original data are completely removedfrom the final output. This technique can be applied tocolumns or tuples to hide them when needed [44].

8.1.3.2 ‐AnonymityPrivacy is a critical issue in edge computing, comparable inimportance to other areas. The ‐anonymity model is

widely utilized for data privacy protection [37], as it helpsprevent record linkage when data is released for publichealth or demographic research, ensuring the privacy ofdata subjects, involves removing certain identifiers [3].‐Anonymity is a technique to prevent link attacks bygeneralizing and/or suppressing certain elements. Thisensures that no individual is uniquely identifiable within agroup of size [35]. A dataset with ‐anonymity ensuresthat each record is indistinguishable from at least other records in the dataset. The larger the value of , thehigher the level of privacy, as it becomes more difficult toidentify any individual with a probability greater than 1/through linking attacks [11]. Increasing the ‐valueenhances the level of privacy protection [3]. is aparameter that represents the level of anonymity in adataset.Despite the numerous anonymization methods available, ‐anonymity remains popular due to its straightforward yeteffective privacy guarantees. It employs techniques likesuppression and generalization to obscure data [64].Suppression involves deleting records from the dataset toprotect privacy, while generalization involves replacingquasi‐identifiers—attributes that could be used to reidentifyindividuals when combined with external data—with moregeneral data. The challenge with ‐anonymization lies inbalancing data utility and privacy protection. The processcan impact the usefulness of the data, as both datasuppression and generalization can alter its utility. Thechallenge with ‐anonymization lies in balancing datautility and privacy protection. The process can impact theusefulness of the data, as both data suppression andgeneralization can alter its utility. Therefore, achievingoptimal solutions in ‐anonymity is crucial, aiming toprotect data privacy while minimizing the effects on datautility [37].

Table 8.1 Original dataset.
Name Age Gender Zip code DiseaseDana 24 F 45011 DiabetesJohn 30 M 45012 NoneJack 28 M 45013 AsthmaAlex 26 M 45014 HypertensionChloe 27 F 45015 NoneFiona 29 F 45016 Diabetes

Table 8.2 Anonymized dataset with 2‐anonymity.
Name Age Gender Zip code DiseaseSuppressed 20–25 F 450** DiabetesSuppressed 26–31 M 450** NoneSuppressed 26–31 M 450** AsthmaSuppressed 26–31 M 450** HypertensionSuppressed 26–31 F 450** NoneSuppressed 26–31 F 450** DiabetesSuppressed 20–24 F 450** DiabetesTo better illustrate the concept of ‐anonymity, an exampleis provided in Tables 8.1 and 8.2. Table 8.1 presents theoriginal dataset for disease analysis, which containssensitive patient information such as name, age, andzipcode. These details could be exploited by others todirectly or indirectly identify individuals. To anonymize thedata, operations, including suppressing names,generalizing ages and zip codes, and adding a new entry atthe end of the table, are performed. These modificationsresult in a dataset that satisfies 2‐anonymity, meaning eachrecord is indistinguishable from at least one other record inthe dataset in terms of age, gender, and zip code. Please

note this process achieves the goal of anonymization, butadding an additional entry may impact the disease analysisaccuracy.The above example shows how to preserve identity privacy,but ‐anonymity can be applied to protect various forms ofprivacy, including identity, location, behavior, and dataprivacy in edge computing. For example, recent researchhas developed a ‐anonymity mechanism to preservebehavior privacy by ensuring similar task offloadingfrequencies among groups of at least k users. Thistechnique creates equivalence classes that obscureindividual user behaviors [29]. By generalizing taskfrequencies within these groups, privacy protection isachieved. Adaptive strategies further refine this approachby adjusting offloading behaviors based on privacythresholds, effectively managing privacy risks by switchingbetween local and edge computing.In another recent effort [76], researchers have devised a ‐anonymity algorithm to protect location privacy forlocation‐aware services. This system employs a methodcalled dual ‐anonymity, which hides user's real locationby mixing it with several fake locations before transmittingit to the service provider. An intermediary server, known asan edge server, facilitates this process by handling thecommunication and also storing frequently requestedlocation information. This approach not only makes itdifficult for others to trace user's actual location but alsoimproves service efficiency by using previously cached datafor similar future requests, ensuring both privacy andperformance.
8.1.3.3 Differential PrivacyDifferential privacy is a technique designed to protect theprivacy of individual records within statistical databases by

(8.1)

ensuring that the output of a function is not sensitive to anyspecific record in the dataset. This approach helps tominimize the risks of identifying individual records,focusing on the privacy of these records rather than thedataset as a whole [69]. Differential privacy is a rigorousand provably secure method that does not depend on thebackground knowledge of attackers, effectively resistingmembership inference attacks [31]. It is a notable privacy‐preserving mechanism that maximizes the protection ofdata against adversaries with substantial backgroundknowledge [74]. Therefore, differential privacy has gainedsignificant attention and has been the subject of extensiveresearch, especially in applications related to edgecomputing [13].
Equation 8.1 shows the concept of ‐differential privacy,where, is a random algorithm that provides ‐differential privacy, and are neighboring datasetsthat differ by at most one record, is any subset of therange of possible outputs, and is the privacy budget. Thisdefinition ensures that the presence or absence of anyindividual record in the dataset does not significantly affectthe output of the algorithm, providing a quantifiable levelof privacy [74].
8.1.3.4 Privacy BudgetThe privacy budget in differential privacy refers to theallowable amount of noise that can be added to the databefore it significantly impacts the model's accuracy.Balancing this budget is crucial to maintaining both privacyand data utility [7]. Privacy budget, often denoted as ,controls the amount of noise added, balancing privacyprotection and data utility [69].

(8.2)

8.1.3.5 Global SensitivityThe sensitivity metric quantifies the extent of requiredperturbation within a differentially private mechanism. In asimilar vein, global sensitivity is concerned with themaximum deviation between query outputs across twodatasets that differ in only a single element (commonlyreferred to as neighboring datasets). For a randomizedquery , the global sensitivity is determinedusing the following expression:
The discourse on differential privacy can be categorizedinto two principal branches: existing differential privacymethods and noise addition mechanisms [23].
8.1.3.6 Noise AdditionRandom noise in datasets obscures individual data pointswithout compromising overall accuracy, thus protectingdataset privacy to a great extent [7]. The volume of noiseadded for privacy protection is unrelated to the dataset'ssize [69]. Instead, the noise addition is proportional to thevariance in the dataset, and the noise added to satisfydifferential privacy is based solely on the value of globalsensitivity for the Sum query, independent of the actualdataset [57].
8.1.3.7 The Laplacian MechanismThe Laplacian mechanism is a widely utilized approach in‐differential privacy for query functions that yieldresponses , wherein the concept of sensitivity ispivotal. Given a query function and a norm function over the range of , the sensitivity is defined as:

(8.3)

(8.4)

Typically, the norm function is either the or norm. , also known as the Manhattan norm, representsthe sum of the absolute values of the differences, and represents the Euclidean norm, which is the square root ofthe sum of the squares of the differences.The Laplacian mechanism operates by taking a queryfunction and a norm function over its range, producing aperturbed function that adheres to ‐differential privacy. Here, is a stochastic variable with aprobability density function given by:
Moreover, an alternative to the Laplacian mechanisminvolves substituting Laplacian noise (i.e., in the aboveformula) with Gaussian noise. This modificationsignificantly diminishes the probability of generatingexcessively large noise values; however, it retains ‐differential privacy for some , which is a relaxation ofthe stricter ‐differential privacy criterion [28].Recent research [13] explores the use of differentialprivacy to protect location privacy in edge computing. Thecore concept involves end devices performing perturbation,meaning they alter their location data before transmitting itto edge servers. This perturbation ensures that the datareceived by edge servers is sufficiently “noisy” to preventthe identification of specific users, while still maintainingoverall statistical utility.Specifically, the geographical area is divided into sectionsusing Voronoi diagrams, with each cell in the diagramrepresenting a distinct area of the network's edge. Enddevices independently perturb their location data in

accordance with the principles of location differentialprivacy (LDP) before transmitting it to the nearest edgenode. These edge nodes then gather the perturbed datapoints and perform necessary analyses or aggregate thedata for further processing.By applying LDP, the exact locations of users areobfuscated through the introduction of random noise,thereby significantly reducing the risk of privacy breaches.Additionally, because the data is processed close to itspoint of generation—at the edge of the network—thesystem can efficiently manage large volumes of data withminimal latency.
8.1.3.8 Homomorphic EncryptionHomomorphic encryption is a specialized encryptionscheme that allows third parties to operate on encrypteddata without decrypting it in advance [4]. This capabilityprotects sensitive information by enabling data to beprocessed in an encrypted form, ensuring that onlyencrypted data is accessible to service providers [43].Homomorphic encryption is advantageous as it allowsoperations on ciphertexts, yielding the same results asoperations conducted directly on raw data [75].Homomorphic encryption enables operations on plaintextswithout decryption, allowing additions and multiplicationson ciphertexts to reflect directly on the correspondingplaintexts. This capability allows for data manipulationwithin the encrypted domain [39]. As a result,homomorphic encryption is seen as a key approach tosolving database query problems on encrypted data. Withthe increasing requirements for the privacy of digital dataand the algorithms used to process more complexstructures, homomorphic encryption aligns with the growth

(8.5)

of communication networks, equipment, and theircapacities [68].Edge servers present potential risks as they can becompromised in certain situations, raising concerns aboutdata privacy and security when transmitting raw data.Traditional encryption methods protect data only duringtransmission, leaving stored data vulnerable tounauthorized access or breaches. Although homomorphicencryption allows secure ciphertext processing, it typicallyincurs significant latency, rendering it impractical for real‐time applications [10]. The process of signing data toensure its integrity and authenticity can consumesignificant computing resources and lead to challengessuch as high latency and unsafe data storage and sharing[75].An encryption scheme is called homomorphic over anoperation “ ” if it supports the following equation:
In Equation 8.5, is the encryption algorithm and isthe set of all possible messages [4]. Homomorphicencryption enables operations on plaintexts withoutdecryption, allowing additions and multiplications onciphertexts to reflect directly on the correspondingplaintexts.In homomorphic encryption, the “magic” lies in the abilityto perform operations directly on encrypted data(ciphertext) to obtain a result that, when the result isdecrypted, matches the result of performing these sameoperations on the original, unencrypted data. Figure 8.2illustrates this concept with an example.

Figure 8.2 An example of homomorphic encryption.In the figure, the original data consists of two plaintextwords, “Alex” and “Doctor.” These words are separatelyencrypted using a specific method with public keys,resulting in ciphertexts, assumed to be “Dohc” and“Grfwru.” Then, we perform an operation, represented by“+,” on the ciphertext, and producing an encrypted result,assumed to be “Dohc Grfwru.” When this result isdecrypted using private keys, the outcome is “Alex Doctor,”identical to the result that would have been obtained if theoperations had been performed on the original plaintext.This process ensures that the results are derived withoutexposing the original plaintexts, “Alex” and “Doctor.”When applied in edge computing, different end devices canlocally encrypt their sensitive information and then send itto an edge server. Upon receiving encrypted data frommultiple edge devices, the edge server can performcomputationally intensive operations to analyze theencrypted data. Then the result will be sent back to eachindividual end device, where it can be decrypted andviewed in plaintext. In this process, the edge server'scomputational power is leveraged to perform complexoperations while preserving data privacy.

However, one concern with homomorphic encryption is itssignificant consumption of computing resources, which canlead to high latency.
8.1.3.9 Federated LearningFL is a ML technique that develops a global model usingdata from decentralized clients without the need tocentralize the data [16]. This approach allows multipledistributed nodes to collaboratively train a sharedprediction model using their local data [67]. Recentadvancements in FL have significantly enhanced thepractical application of secure multiparty computingtheory. It preserves the privacy of source data by onlyinteracting with the server through parameter updates.Additionally, FL aligns closely with edge computingprinciples, making their combination a prominent trend[31]. This process involves building a shared global modelat an aggregator, such as a multi‐access edge computingserver located at a base station or an access point (AP)[46].FL typically trains neural networks in a decentralizedmanner across numerous devices as shown in Figure 8.3. Inthis framework, a global neural network is maintained on acentral server, while the training data for the neuralnetwork is distributed across multiple nodes (e.g.,autonomous cars in the figure), often exhibitingheterogeneity. Consider several nodes,. Each retains its privatedataset , and a local neural network's loss function,denoted by .During synchronization, each computes an updatedweight based on the current weight at time , , the step

(8.6)

(8.7)

size , and its private dataset . The update rule is givenby the following equation:

Each node then sends its updated weight to the server,which aggregates the weights uploaded by all nodes usingan aggregation function . The aggregated weights areused to update the global model for the next iteration. Theglobal model weights at time are thus:

Figure 8.3 Federated learning.
The server sends the weights of the updated global modelback to each node to trigger another iteration of localtraining. This process continues until a stop condition ismet [30].

FL reduces communication costs, enhances data privacy,and improves system scalability [2, 70], while it alsorequires that end nodes should possess sufficientcomputational complexity to perform local model training,which could be a challenge for many [16].Recent work [62] demonstrates how edge FL is applied fordata analytics in autonomous vehicle networks. Eachautonomous vehicle manages data from various sensors,including GPS (global positioning system), LiDAR (LightDetection and Ranging), and multiple onboard cameras,which are essential for intelligent navigation and earlywarnings [67]. The vehicles develop local models andcollaborate with the edge server to train an effective globalmodel following the steps described earlier. This approachenhances smart vehicle decision‐making while preservingdata privacy and maintaining efficiency.
8.1.4 Open Research ProblemsDespite the development of numerous privacy‐perseveringsolutions proposed in edge computing, there are still manyopen research problems. In the following text, we highlightsome of these key areas.

Federated learning: While FL has been proven to bean effective approach for preserving privacy, especiallysuitable for the edge computing systems andapplications, it usually requires significantcomputational resources. Research is needed to find abalance between computational efficiency and privacyin FL for edge computing.
Differential privacy: As a rigorous and provablemethod, differential privacy offers an excellentapproach for protecting privacy; however, applying it tocontinuous data flow in edge computing presents

substantial challenges, particularly for applicationswith real‐time requirements. Exploring solutions thataddress these challenges is critical.
Homomorphic encryption: Homomorphic encryptionis a powerful tool for both security and privacy, but it isoften computationally heavy, making it difficult formany resource‐constrained edge devices. Developinglightweight homomorphic encryption algorithmstailored for edge computing could significantly enhanceits practicality.
AI‐driven anonymization: Recent advances inartificial intelligence (AI) provide new opportunities toaugment and anonymize the data without significantlycompromising data utility. Exploring approaches basedon transformer models and large language modelscould open new avenues for privacy preservation inedge computing.
Security, privacy, and trust trade‐offs: There areinherent trade‐offs between security, privacy, and trustin collaborative edge computing environments, whichusually involve multiple untrusted or semi‐trustedparties. Research is needed to develop mechanismsthat can establish and maintain trust and security whileensuring privacy across heterogeneous and untrustededge nodes.
Legal and ethical regulations: The legal and ethicalimplications of privacy in edge computing are criticalfor many edge computing systems and applications. Weneed to investigate various legal frameworks toregulate and ensure compliance and protect userrights.

8.2 Accessibility and Digital DivideBias is another important ethical and social concern inedge computing. This section provides an overview of thevarious types of biases, their causes, their impact on edgecomputing algorithms, and strategies for mitigating thesebiases.
8.2.1 What Is Bias?Bias simply refers to deviation from a standard [19]. Bias inthe context of algorithmic systems refers to a deviationfrom a normative standard. This term encompasses avariety of system behaviors, such as “gender bias” or“racial bias,” which may impact different groups in diverseand harmful ways [14]. The concern with fairness and biasis integral to discussions of data justice, highlighting thepotential of “big data” and algorithmic decision‐making toexacerbate existing societal injustices [24]. Automateddecision‐making systems, even without malicious intent,can lead to unfair outcomes that disproportionatelydisadvantage or advantage specific groups defined bysensitive attributes like race or gender [72]. Bias canappear at multiple stages within the ML lifecycle, includingdata collection, preparation, modeling, evaluation, anddeployment [5]. The increasing reliance on algorithms invarious social and economic domains has promptedconcerns about their potential to inadvertently perpetuatediscrimination [33].Edge deployments are inherently heterogeneous, withvarying sensing capabilities and environmental conditionsacross different deployments. This heterogeneity disruptsthe independence and identical distribution property oflocal data across distributed edge nodes, leading to biasedglobal models. Such models contribute to unfair decision‐making and discrimination against specific communities or

groups [58], affecting system reliability, which is the abilityof on‐device ML to consistently deliver stable andpredictable performance under expected operatingconditions [26].
8.2.2 Types of BiasesBiases can be examined from various perspectives, leadingto many different types. In the following text, we introducea list of frequently encountered biases. We also identifiedone specific cause and corresponding mitigation techniquefor each type of bias.

Data bias: Data bias refers to the inherent variabilityand potential prejudices present in datasets. Thesebiases can emerge due to the diverse quality of datasources [9]. This widespread data bias significantlyinfluences the algorithms we develop to enhance userexperiences, affecting their accuracy and fairness [8].For instance, individuals working in government,universities, and other information‐centric institutionstypically produce data of higher quality and reducedbias. In contrast, social media platforms, with theirextensive and diverse user base, tend to generate morebiased and lower‐quality data [9].
Algorithmic bias: Algorithmic bias occurs when analgorithm introduces bias that was not present in theinput data. Algorithms can both reflect and amplifyhuman or structural biases, or create their owncomplex biases [65]. If an algorithm is trained onbiased data, it is likely to reinforce the patterns fromthe dominant category within that data [47]. This biascan exist even if the algorithm's developer did notintend to discriminate [22]. It arises from thedifferential usage of information in the input or trainingdata, leading to biased outputs [19].

While the input data might be unbiased, the algorithmitself can still generate bias. Defining a fair algorithmicapproach is complex, often requiring human expertiseto determine if an output is biased [9]. Furthermore,algorithms can create new biases, such aspresentation bias, which alters future interaction data,thereby generating additional biases [8].Here we provide two examples of algorithm bias. Inthis first example, even when the training data isdiverse, the algorithm is designed to prioritizeaccuracy across the entire dataset rather thanensuring equal performance across differentdemographic groups. As a result, the algorithm mightwork exceptionally well for identifying faces of certaindemographics (e.g., middle‐aged white males) butperforms poorly on others (e.g., women, people ofcolor, or older adults). In another example, consider analgorithm trained on a dataset with healthy and diseased images. This algorithm could achieve accuracy by simply classifying all samples ashealthy, even though it fails to correctly identifydiseased cases [47]. Such an algorithm would besignificantly biased when applied to disease analysis.
Cause: Algorithmic bias in ML‐based models oftenstems from inaccurate datasets that misrepresent thetarget demographics, inadequate model attributes, orinaccurate development and deployment methods [6].This bias can manifest through the differentialtreatment of information within the input data, oftenexacerbated when models are inappropriately used ordeployed across different contexts, leading to biasedoutcomes [19].
Mitigation: Algorithmic bias often arises when modelsare overfitted to noisy or atypical data. To mitigate this,

many algorithms incorporate smoothing orregularization techniques that help prevent suchoverfitting [19]. Ideally, the development of newalgorithms that inherently lack such biases would be apreferable solution. Additionally, personalizationalgorithms, by focusing on individual user relevancerather than aggregate popularity metrics, can reducebiases linked to widespread preferences [15]. However,developing ML applications that are unbiased requiresa comprehensive skill set, encompassing datacollection, integration, algorithm development, andoversight during algorithm training [6].
Statistical bias: Statistical bias occurs when analgorithm produces results that deviate from the trueunderlying estimate. This type of bias is prevalent inpredictive algorithms due to various factors such assuboptimal sampling methods, measurement errors inpredictor variables, and the heterogeneity of effects[51]. In statistical terms, bias arises when thedistribution of a dataset does not accurately representthe true distribution of the population, leading thealgorithm to produce outputs that differ from the actualestimate [47]. An example of statistical bias is when amedical AI system trained primarily on data from youngadults fails to accurately predict health outcomes forolder adults. This happens because the data does notrepresent the entire population, leading to skewedpredictions that do not account for the differences inage groups.
Sampling bias: Sampling bias is a type ofrepresentation bias that occurs from nonrandomsampling of specific subgroups. Sampling bias causesthe patterns observed in one group to be inaccuratelygeneralized to new groups from different populations[41]. For instance, if a survey about job satisfaction is

conducted exclusively within high‐tech industries, theresult might misleadingly suggest higher jobsatisfaction levels across all industries. This occursbecause other sectors, such as retail or healthcare, arenot included. Although sample bias shares similaritieswith statistical bias, they are different types of bias.Sample bias arises during the data collection, that is,how the sample is selected, while statistical bias couldoccur at various stages, including data collection,model selection, etc.
Social bias: Social bias arises when externalinfluences, such as the behavior of others, skew ourjudgments [65]. This type of bias can result fromalgorithmic inaccuracies, which might be statisticallybiased, or from human elements, such as implicit orexplicit biases [51]. An example of social bias, a jobapplication system prioritizes resumes that includecertain elite universities, it may unintentionally favorcandidates from more privileged backgrounds,overlooking equally talented individuals from lessrecognized schools.
Historical bias: Historical bias reflects preexistingsocietal and technical biases that can infiltrate data,even with ideal sampling and feature selectionprocesses [65]. This bias often affects automateddecision‐making systems that rely on historical data fortraining [72]. An example of an automated hiringsystem uses past employment records to makedecisions. If these past records show a trend of hiringmore men than women for certain roles, the systemmight continue to favor men, perpetuating the existinggender imbalance.
Representation bias: Representation bias occurs dueto the sampling methods used when collecting data

from a population [65]. Representation bias occurswhen the training data inadequately represents certainsegments of the target population, leading to poorgeneralization to those groups. For instance, a surveyaimed at assessing illegal drug use among teenagersmay be biased if it only includes responses from highschool students while excluding home‐schooledstudents or dropouts [61].
Group bias: Group bias refers to the discrepancy inclassification performance among different groupsbased on a shared global model in FL. A group isdefined as a subset of data with samples categorized bya specific sensitive attribute such as race, gender,class, or label. In this context, group bias occurs whenthe model's performance varies significantly betweenthese groups [58]. For example, consider a predictivemodel used across hospitals: it might perform well forurban hospitals but poorly for rural ones due todifferences in patient demographics and regionalhealth trends, reflecting a clear group bias.
Attribute bias: Attribute bias occurs in the undirectedattributed network when the value distributions ofcertain attributes differ between demographic groupsbased on a sensitive attribute. This bias can developeven if the original attributes are unbiased, as it canemerge after attributes are propagated through thenetwork. This type of bias is identified by examiningwhether the information propagation in the networkintroduces or exacerbates discrepancies in attributedistributions across demographic groups [20]. Forexample, in a social network, if users primarily shareinformation about their college degrees within theircommunity, the network may propagate thisinformation unevenly, creating an illusion that a higherpercentage of the community holds college degrees.

This distorted view can lead to incorrect assumptionsabout the education level of the entire community, eventhough the original data may not have been biased.
Structural bias: Structural bias in an undirectedattributed network exists when the propagatedattribute values show different distributions betweendemographic groups at any attribute dimension. Thistype of bias indicates that the network structure orinformation propagation process creates or amplifiesdifferences between groups based on sensitiveattributes, resulting in biased outcomes [20]. Anexample of structural bias in an undirected attributednetwork occurs when a social media platform connectsusers and shares job ads differently among groups. Ifthe platform's structure leads to some racial groupsmostly seeing lower‐paying job ads while others seehigher‐paying ads, this indicates a structural bias. Itshows that the network's design itself might unfairlydistribute opportunities based on race.
Measurement bias: Measurement bias, also known asreporting bias, occurs due to the selection, utilization,and measurement of specific features [65]. Forexample, a healthcare study when self‐reported data isused to assess exercise levels. If participantsoverestimate their activity due to social desirability orpoor recall, the results may not accurately reflect truebehaviors, skewing conclusions about exerciseinterventions. This introduces measurement bias,compromising the study's validity.
Evaluation bias: Evaluation bias happens duringmodel evaluation [65]. For example, if an AI healthdiagnostic tool is evaluated using data mainly frommiddle‐aged individuals, it may not perform well foryounger or older populations. This shows population

bias because the evaluation did not consider allrelevant age groups.
Population bias: Population bias emerges when theuser population of a platform exhibits differentstatistics, demographics, representatives, andcharacteristics compared to the intended targetpopulation [65]. For example, in a health app study, thedata gathered on exercise habits mainly comes fromyounger, tech‐savvy users because they are more likelyto use such digital tools. This creates a population biasas it fails to capture the exercise patterns of olderadults, who may be less inclined to use technology.

8.2.3 Causes of Biases?Bias in ML can originate from several sources [52], makingit a multifaceted issue [20] that affects the fairness andaccuracy of AI systems [8]. One major source of bias is thedatasets used for training, which often contain inherentbiases due to various reasons such as biased devicemeasurements, historical human decision biases, erroneousreports, or other factors. These inherent biases in data arecompounded by algorithmic biases that arise from theobjective of minimizing overall aggregated predictionerrors, which typically favors majority groups over minorityones [52].The fairness perspective further highlights that thehomophily of sensitive attributes, such as race, gender, ornationality, directly influences predictions and introducesinequalities [63]. Sources of bias in datasets includemissing values, small sample sizes, and misclassification ormeasurement errors [21]. These issues lead to datasetsthat do not accurately represent the target population [52].To leverage AI's profitable opportunities, we must firstunderstand the origins of these biases. It's a common

misconception that technology is neutral; in reality, MLalgorithms reflect the biases of their creators and the datathey are trained on [5]. AI heavily depends on human‐generated data or systems created by humans, thusinheriting and amplifying human biases through complexsociotechnical systems [48]. Biases have been a part ofculture and history for a long time, but the rise of digitaldata allows them to spread more quickly and widely [9].There is an increasing concern that algorithms mightperpetuate racial and gender disparities due to biases intheir development or the data used for their training [49].Bias in ML models is influenced by various factors,including label heterogeneity, data representation, anddistribution biases [20]. Distribution bias is another criticalfactor, where models make misjudgments due to incorrectshortcuts derived from skewed data distributions [71]. On‐device ML presents unique challenges due to hardwareconstraints like limited memory, computing, and energyresources, which can propagate bias through designchoices [26]. Data representation bias emerges from themethods and origins of data collection. This bias can behistorical, cognitive, or statistical, often arising fromselection bias when sampling methods reach only a portionof the population or when the population of interest differsfrom the one used during model training [61]. Thepropagation of attribute distribution in network structurescan also introduce bias; even unbiased original attributescan become biased through information propagation in abiased network structure [20].Edge bias, unique to FL, emerges from the characteristicsof each edge's dataset, leading to overfitting andincompatibility with other edge's knowledge. This results inskewed learning in the central model and bias in theknowledge distillation process when the teacher model atthe edge is overfitted or too different from the student

model at the core [34]. Traditional sources of biasidentified in centralized ML, such as prejudice,underestimation, and negative legacy, are also prevalent inFL. In FL, each party's local training introduces its biasesinto the global model through shared updates. Theinteractions between parties and the aggregator duringtraining further influence the fairness of the final model[1]. Biases in AI decision‐making processes are ofteninherited due to the closed‐world assumption used inknowledge representation within datasets [32]. FL furthercomplicates bias issues, as each party introduces its biasesinto the global model through shared updates. Theseinteractions between parties and aggregators duringtraining affect the fairness of the final model [1].
8.2.4 Bias Impact on Edge Computing
AlgorithmsEdge‐cloud computing, FL, and other distributedcomputing approaches have become essential for scalingapplications like object detection. These technologies helpaddress challenges related to computation, energyconsumption, privacy, and security. However, despite theirbenefits, these systems are not free from the influence ofbias, which can significantly affect their performance. Biasin these systems can arise from several factors. One criticalissue is the disparity in data classes, imbalanced labeling,and biased ground truth labels. These problems are oftenoverlooked but can lead to inaccurate object detection,especially in environments where vehicles, edge devices,and cloud systems work together [32]. Data used in thesesystems can also be prone to bias because different devices—such as vehicles, sensors, and third‐party applications—generate and process data differently. Environmentalfactors further contribute to this problem, leading toinconsistencies in data quality and biased outcomes.

Another significant issue is the bias that accumulatesduring the dynamic collection and scheduling of data. Asdata samples are collected over time, shifts in theirdistribution can introduce errors. This bias accumulation isparticularly challenging in scenarios requiring preciseperception, such as disaster response, where accuracy iscrucial [71]. The homophily of sensitive attributes, whichrefers to the tendency of similar data points to be groupedtogether, can influence predictions and lead to inequalities.This is a significant issue in systems where fairness is a keyconsideration [63]. Moreover, FL, a common approach inedge computing, faces a global bias problem. This issuearises because wireless channels used to transmit local andglobal parameters can be unreliable. Poor wirelessconditions may result in the loss of critical datatransmissions, which biases the global model towarddevices with better connectivity. As a result, the globalmodel may drift away from the optimal solution, leading toreduced accuracy and slower learning processes [73].
8.2.5 Bias Mitigation TechniquesA variety of methods have been proposed to evaluatealgorithms, including model interpretability, audits, expertanalysis, and reverse engineering [65]. Algorithmic fairnessalso presents numerous legal challenges and complexities,with law and regulation still in the early stages in thisrapidly evolving field [65]. Techniques from ML, developedto handle missing data, can help mitigate potential biases.Additionally, systems designed to identify erroneousdocumentation are crucial to reduce misclassification basedon implicit bias [21]. It is essential to adopt proceduralapproaches to ensure transparency, explainability,accountability, fairness, and ethical considerationsthroughout the lifecycle of ML models [5]. One strategy tocombat presentation bias is to incorporate elements such

as diversity, novelty, and serendipity to the algorithmicprocess [8].Addressing societal biases may necessitate adjusting datacollection processes or manually integrating anunderstanding of these biases into the model‐buildingprocess, and in some cases, these issues may not havetechnical solutions at all [42]. Numerous studies,particularly in computer science, have indicated that simplyexcluding race from the predictor is insufficient sinceprotected features can be reconstructed from othervariables. To address this “reconstruction problem,”methods such as preprocessing data to orthogonalizeexplanatory variables or outcomes to race, or modifying theloss function to penalize race disparities, have beenproposed [33].
8.2.5.1 Bias Mitigation in AlgorithmsAs concerns rise about biases in datasets and ML models,there is an essential need to implement bias mitigationalgorithms. These algorithms are crafted to minimizeundesirable biases, thereby ensuring that ML models arefair and trustworthy [12]. To enhance algorithmic fairness,protected attributes such as gender or ethnicity can beincorporated during the training phase to ensure thatalgorithmic predictions are statistically independent ofthese attributes. Alternatively, loss functions can betailored for each protected group, ensuring that no singlegroup is systematically misclassified by setting a thresholdfor these functions [47]. Approaches to enhancing fairnessare generally grouped into three categories: preprocessingdata, enforcing fairness during model training (alsoreferred to as in‐processing), and modifying outputs afterthe model has processed the data [53].

8.2.5.2 Preprocessing and In‐processingPreprocessing methods aim to enhance fairness in trainingdata, thereby reducing the likelihood of producingdiscriminatory models. These approaches operate beforethe model is trained, focusing on ensuring that the data isless biased.In the preprocessing phase, various strategies areemployed to mitigate bias. Some popular ones are listedbelow.
Reweighing: This technique adjusts the importance oftraining data by assigning specific weights to differentcombinations of groups and outcomes. The goal is topromote fairness by balancing the representation ofthese groups before learning.
Suppression: This method involves eliminatingsensitive attributes from the dataset to prevent themodel from learning biases associated with theseattributes.
Massaging: In this approach, labels in the dataset arealtered to reduce bias, ensuring that the data fed intothe model is less likely to reinforce existing prejudices.
Multiple imputations: This technique addresses biasintroduced by missing data by replacing missing valueswith estimated values, thereby reducing potential skewin the model.

8.2.5.3 In‐processingIn the model development stage, also known as the in‐processing phase, in‐processing methods are employed toaddress bias by integrating considerations ofdiscriminatory behavior directly into the design and

selection of the model. In the following text, we introduceseveral popular in‐processing approaches.
Fairness constraints: Incorporate fairness constraintsdirectly into the model's objective function [48]. Theseconstraints can ensure that the model's performance isbalanced across different demographic groups.
Regularization techniques: Regularization is used topenalize the model for making predictions that arebiased or discriminatory. By adding a fairnessregularizer to the loss function, the model isencouraged to make predictions that are both accurateand fair, reducing the risk of bias.
Algorithm choice: Some algorithms are more prone tobias than others. For instance, certain decision treesmight propagate biases present in the data. Exploreand choose algorithms that are less likely to amplifybiases.
Adversarial debiasing: Implement adversarialtechniques where a secondary model (the adversary) istrained to predict the sensitive attributes from the mainmodel's predictions. The main model is then adjusted tominimize the adversary's accuracy, thereby reducingbias.
Fair representation learning: Fair representationlearning is a technique that develops a model to makeaccurate predictions while eliminating biasesassociated with sensitive information [50]. In thisapproach, the model is designed to learnrepresentations of the data that are invariant tosensitive attributes, such as race or gender.

These in‐processing approaches are crucial for mitigatingbias during model development, ensuring that the resulting

model is not only effective but also equitable in its decision‐making process. These approaches can be combined tobuild more robust and equitable models. For instance, theintegration of fair representation learning with adversariallearning strategies may create models where thedistribution of data representations, conditioned on eachsensitive attribute, remains uniform across differentgroups. This helps to address both direct and indirectbiases, leading to more fair and balanced outcomes invarious applications [66].
8.2.5.4 PostprocessingPostprocessing techniques focus on adjusting modeloutputs to achieve fairness [48]. In the postprocessingstage of an algorithm, the aim is to modify the results toensure fairness. The ideal postprocessing debiasingapproach considers both group and individual fairness.However, addressing bias and maintaining accuracy can bechallenging, as they often conflict. Specifically, focusing onindividual bias reduction in postprocessing might lead to adecrease in accuracy [36]. Various postprocessing biasmitigation techniques and performance metrics have beenproposed to adjust and reduce biases within the predictionmodels [45].
8.2.6 Open Research ProblemsResearch in bias mitigation is ongoing, with significantadvancements in techniques aimed at enhancing fairnessand minimizing indirect prejudices stemming fromalgorithmic predictions [21]. Policymakers are confrontedwith difficult and impactful decisions, often facinguncertainty about the most appropriate course of action invarious contexts [18]. As methods to debias ML algorithmscontinue to develop, there are also improvements intechniques to enhance fairness and reduce indirect

prejudices that result from algorithm predictions [21]. MLtechniques designed to handle missing data can helpcontrol for potential biases.It is imperative to consider, adopt and institute proceduralapproaches to ensure transparency, explainability,accountability, fairness and ethical considerations of theunderlying models used in lifecycles of ML applications [5].Despite these advances, numerous research problemsremain unexplored, including bias mitigation in multimodaldata, the development of novel evaluation metrics for bias,addressing bias in generative models, improvinginterpretability about bias in model, and achieving fairnessin dynamic environments.
8.3 Summary and Practice
8.3.1 SummaryThis chapter focused on two important ethical and socialconcerns: privacy and bias.In the section on privacy, we began by discussing theimportance of privacy, defining various forms of privacy,and outlining key privacy concerns. We then introduced asuite of major privacy‐preserving techniques, includingtraditional anonymization approaches, ‐anonymity,differential privacy, homomorphic encryption, and FL. Foreach of these techniques, we provided examples of theirapplication and implementation within edge computingenvironments.Regarding bias, we analyzed different types of biases andtheir underlying causes. Additionally, we explored howthese biases impact the performance of edge computingalgorithms, especially those machine learning and deeplearning algorithms. Moreover, we presented a series of

biases mitigation strategies designed to address thesechallenges.Despite the extensive efforts by researchers to tackleprivacy and bias issues, significant open researchchallenges remain, which we have summarized at theconclusion of each topic.
8.3.2 Practice Questions

1. Identify the key factors that contribute to biases in AImodels deployed on edge devices and discuss howthese biases might manifest in real‐world applications.2. Discuss the potential privacy concerns associated withcollecting and processing data at the edge.3. Analyze how biases in edge computing algorithms canimpact different user groups, and outline steps tomitigate these biases.4. Examine the legal measures necessary to ensureprivacy protection in edge computing.5. Discuss the technical challenges of implementingprivacy‐preserving techniques such as differentialprivacy and federated learning on edge devices, andhow do these challenges affect privacy and bias.
8.3.3 Course Projects

1. Evaluate the privacy concerns of a basic edgecomputing application.2. Implement and evaluate a privacy‐preservingalgorithm.3. Assess bias in a given dataset.4. Implement and evaluate a bias mitigation algorithm.

5. Propose new strategies to minimize biases in a specificedge computing algorithm.6. Design protocol for secure data aggregation in edgenetworks.7. Create a framework for auditing decisions made by AImodels on edge devices, ensuring transparency andaccountability in AI‐driven processes.8. Implement edge computing for privacy‐preservingapplications in important domains such as healthcare,connected autonomous vehicles, and others.9. Evaluate the potential of blockchain technology inenhancing privacy and reducing bias in edge computingapplications.10. Design a system for real‐time privacy monitoring inedge IoT applications.

Chapter 8 Suggested Papers
 1 Nicol Turner Lee, Paul Resnick, and Genie Barton.“Algorithmic bias detection and mitigation: Bestpractices and policies to reduce consumer harms”. In:

Brookings Institute: Washington, DC, USA 2 (2019). 2 Pasika Ranaweera, Anca Delia Jurcut, and MadhusankaLiyanage. “Survey on multi‐access edge computingsecurity and privacy”. In: IEEE Communications Surveys
& Tutorials 23. 2 (2021), pp. 1078–1124. 3 Mark Ryan. “The future of transportation: Ethical, legal,social and economic impacts of self‐driving vehicles inthe year 2025”. In: Science and Engineering Ethics 26. 3(2020), pp. 1185–1208. 4 Kewei Sha et al. “On security challenges and open issuesin Internet of Things”. In: Future Generation Computer
Systems 83 (2018), pp. 326–337. 5 Kewei Sha et al. “A survey of edge computing‐baseddesigns for IoT security”. In: Digital Communications and
Networks 6. 2 (2020), pp. 195–202.

References 1 Annie Abay et al. “Mitigating bias in federated learning”.In: arXiv preprint arXiv:2012.02447 (2020). 2 Haftay Gebreslasie Abreha, Mohammad Hayajneh, andMohamed Adel Serhani. “Federated learning in edgecomputing: A systematic survey”. In: Sensors 22. 2(2022), p. 450.

 3 Ibrahim Bio Abubakar, Tarjana Yagnik, and KabiruMohammed. “Robustness of k‐anonymization model incompliance with general data protection regulation”. In:
2022 5th International Conference on Computing and
Big Data (ICCBD). IEEE. 2022, pp. 67–72. 4 Abbas Acar et al. “A survey on homomorphic encryptionschemes: Theory and implementation”. In: ACM
Computing Surveys (CSUR) 51. 4 (2018), pp. 1–35. 5 Shahriar Akter et al. Algorithmic bias in data‐driveninnovation in the age of AI. International Journal of
Information Management 60 (2021), p. 102387. 6 Shahriar Akter et al. “Algorithmic bias in machinelearning‐based marketing models”. In: Journal of
Business Research 144 (2022), pp. 201–216. 7 Abdulmalik Alwarafy et al. “A survey on security andprivacy issues in edge‐computing‐assisted Internet ofThings”. In: IEEE Internet of Things Journal 8. 6 (2020),pp. 4004–4022. 8 Ricardo Baeza‐Yates. “Data and algorithmic bias in theweb”. In: Proceedings of the 8th ACM Conference on
Web Science. 2016, pp. 1–1. 9 Ricardo Baeza‐Yates. “Bias on the web”. In:
Communications of the ACM 61. 6 (2018), pp. 54–61.

10 Tianyu Bai, Qing Yang, and Song Fu. “User‐definedprivacy preserving data sharing for connectedautonomous vehicles utilizing edge computing”. In: 2023
IEEE/ACM Symposium on Edge Computing (SEC). IEEE.2023, pp. 145–157.

11 Roberto J Bayardo and Rakesh Agrawal. “Data privacythrough optimal k‐anonymization”. In: 21st International

Conference on Data Engineering (ICDE'05). IEEE. 2005,pp. 217–228.
12 Karan Bhanot et al. “Stress‐testing bias mitigationalgorithms to understand fairness vulnerabilities”. In:

Proceedings of the 2023 AAAI/ACM Conference on AI,
Ethics, and Society. 2023, pp. 764–774.

13 Mengnan Bi et al. “A privacy‐preserving mechanismbased on local differential privacy in edge computing”.In: China Communications 17. 9 (2020), pp. 50–65.
14 Su Lin Blodgett et al. “Language (technology) is power:A critical survey of” bias” in NLP”. In: arXiv preprint

arXiv:2005.14050 (2020).
15 Engin Bozdag. “Bias in algorithmic filtering andpersonalization”. In: Ethics and Information Technology15 (2013), pp. 209–227.
16 Alexander Brecko et al. “Federated learning for edgecomputing: A survey”. In: Applied Sciences 12. 18(2022), p. 9124.
17 Wei Chang and Jie Wu. Fog/Edge Computing for

Security, Privacy, and Applications. Springer, 2021.
18 Sam Corbett‐Davies et al. “Algorithmic decision makingand the cost of fairness”. In: Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2017, pp. 797–806.

19 David Danks and Alex John London. “Algorithmic bias inautonomous systems”. In: Ijcai 17. 2017 (2017), pp.4691–4697.
20 Yushun Dong et al. “EDITS: Modeling and mitigatingdata bias for graph neural networks”. In: Proceedings of

the ACM Web Conference 2022. 2022, pp. 1259–1269.
21 Milena A Gianfrancesco et al. “Potential biases inmachine learning algorithms using electronic healthrecord data”. In: JAMA Internal Medicine 178. 11 (2018),pp. 1544–1547.
22 Sara Hajian, Francesco Bonchi, and Carlos Castillo.“Algorithmic bias: From discrimination discovery tofairness‐aware data mining”. In: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2016, pp. 2125–2126.

23 Muneeb Ul Hassan, Mubashir Husain Rehmani, andJinjun Chen. “Differential privacy techniques for cyberphysical systems: A survey”. In: IEEE Communications
Surveys & Tutorials 22. 1 (2019), pp. 746–789.

24 Anna Lauren Hoffmann. “Where fairness fails: Data,algorithms, and the limits of antidiscriminationdiscourse”. In: Information, Communication & Society22. 7 (2019), pp. 900–915.
25 Chris Jay Hoofnagle, Bart Van Der Sloot, and FrederikZuiderveen Borgesius. “The European Union generaldata protection regulation: What it is and what itmeans”. In: Information & Communications Technology

Law 28. 1 (2019), pp. 65–98.
26 Wiebke Hutiri et al. “Tiny, always‐on, and fragile: Biaspropagation through design choices in on‐devicemachine learning workflows”. In: ACM Transactions on

Software Engineering and Methodology 32. 6 (2023), pp.1–37.
27 Priyank Jain, Manasi Gyanchandani, and Nilay Khare.“Big data privacy: A technological perspective and

review”. In: Journal of Big Data 3 (2016), pp. 1–25.
28 Zhanglong Ji, Zachary C Lipton, and Charles Elkan.“Differential privacy and machine learning: A survey andreview”. In: arXiv preprint arXiv:1412.7584 (2014).
29 Tao Jiang and Yubo Song. “Privacy protection offloadingalgorithm based on K‐anonymity in mobile edgecomputing networks”. In: 2023 IEEE 11th International

Conference on Information, Communication and
Networks (ICICN). IEEE. 2023, pp. 248–254.

30 Pengfei Jiang and Lei Ying. “An optimal stoppingapproach for iterative training in federated learning”. In:
2020 54th Annual Conference on Information Sciences
and Systems (CISS). IEEE. 2020, pp. 1–6.

31 Bin Jiang et al. “Privacy‐preserving federated learningfor industrial edge computing via hybrid differentialprivacy and adaptive compression”. In: IEEE
Transactions on Industrial Informatics 19. 2 (2021), pp.1136–1144.

32 Dewant Katare et al. “Bias detection and generalizationin AI algorithms on edge for autonomous driving”. In:
2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC). IEEE. 2022, pp. 342–348.

33 Jon Kleinberg et al. “Algorithmic fairness”. In: AEA
Papers and Proceedings. Vol. 108. American EconomicAssociation 2014 Broadway, Suite 305, Nashville, TN37203. 2018, pp. 22–27.

34 Sangho Lee, Kiyoon Yoo, and Nojun Kwak. “Edge bias infederated learning and its solution by bufferedknowledge distillation”. In: arXiv preprint
arXiv:2010.10338 (2020).

35 Kristen LeFevre, David J DeWitt, and RaghuRamakrishnan. “Incognito: Efficient full‐domain k‐anonymity”. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data. 2005,pp. 49–60.

36 Pranay Lohia. “Priority‐based post‐processing biasmitigation for individual and group fairness”. In: arXiv
preprint arXiv:2102.00417 (2021).

37 Waranya Mahanan, W Art Chaovalitwongse, andJuggapong Natwichai. “Data anonymization: A noveloptimal k‐anonymity algorithm for identicalgeneralization hierarchy data in IoT”. In: Service
Oriented Computing and Applications 14 (2020), pp. 89–100.

38 Abdul Majeed and Sungchang Lee. “Anonymizationtechniques for privacy preserving data publishing: Acomprehensive survey”. In: IEEE Access 9 (2020), pp.8512–8545.
39 Chiara Marcolla et al. “Survey on fully homomorphicencryption, theory, and applications”. In: Proceedings of

the IEEE 110. 10 (2022), pp. 1572–1609.
40 Joana Ferreira Marques and Jorge Bernardino. “Analysisof data anonymization techniques”. In: KEOD. 2020, pp.235–241.
41 Ninareh Mehrabi et al. “A survey on bias and fairness inmachine learning”. In: ACM Computing Surveys (CSUR)54. 6 (2021), pp. 1–35.
42 Shira Mitchell et al. “Algorithmic fairness: Choices,assumptions, and definitions”. In: Annual Review of

Statistics and its Application 8. 1 (2021), pp. 141–163.

43 Kundan Munjal and Rekha Bhatia. “A systematic reviewof homomorphic encryption and its contributions inhealthcare industry”. In: Complex & Intelligent Systems9. 4 (2023), pp. 3759–3786.
44 Suntherasvaran Murthy et al. “A comparative study ofdata anonymization techniques”. In: 2019 IEEE 5th

International Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing, (HPSC) and IEEE
Intl Conference on Intelligent Data and Security (IDS).IEEE. 2019, pp. 306–309.

45 Lama H Nazer et al. “Bias in artificial intelligencealgorithms and recommendations for mitigation”. In:
PLOS Digital Health 2. 6 (2023), e0000278.

46 Dinh C Nguyen et al. “Federated learning meetsblockchain in edge computing: Opportunities andchallenges”. In: IEEE Internet of Things Journal 8. 16(2021), pp. 12806–12825.
47 Natalia Norori et al. “Addressing bias in big data and AIfor health care: A call for open science”. In: Patterns 2.10 (2021), 100347.
48 Eirini Ntoutsi et al. “Bias in data‐driven artificialintelligence systems—An introductory survey”. In: Wiley

Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 10. 3 (2020), e1356.

49 Ziad Obermeyer et al. “Dissecting racial bias in analgorithm used to manage the health of populations”. In:
Science 366. 6464 (2019), pp. 447–453.

50 Changdae Oh et al. “Learning fair representation viadistributional contrastive disentanglement”. In:

Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2022, pp. 1295–1305.

51 Ravi B Parikh, Stephanie Teeple, and Amol S Navathe.“Addressing bias in artificial intelligence in health care”.In: Jama 322. 24 (2019), pp. 2377–2378.
52 Dana Pessach and Erez Shmueli. “Algorithmic fairness”.In: Machine Learning for Data Science Handbook: Data

Mining and Knowledge Discovery Handbook. Ed. by LiorRokach, Oded Maimon, and Erez Shmueli. Springer,2023, pp. 867–886.
53 Felix Petersen et al. “Post‐processing for individualfairness”. In: Advances in Neural Information Processing

Systems 34 (2021), pp. 25944–25955.
54 Pasika Ranaweera, Anca Delia Jurcut, and MadhusankaLiyanage. “Survey on multi‐access edge computingsecurity and privacy”. In: IEEE Communications Surveys

& Tutorials 23. 2 (2021), pp. 1078–1124.
55 Wang Ren et al. “Privacy enhancing techniques in theInternet of Things using data anonymisation”. In:

Information Systems Frontiers (2021), pp. 1–12.
56 Wilson Santos et al. “Data anonymization: K‐anonymitysensitivity analysis”. In: 2020 15th Iberian Conference on

Information Systems and Technologies (CISTI). IEEE.2020, pp. 1–6.
57 Rathindra Sarathy and Krishnamurty Muralidhar.“Evaluating Laplace noise addition to satisfy differentialprivacy for numeric data”. In: Transactions on Data

Privacy 4. 1 (2011), pp. 1–17.

58 Khotso Selialia, Yasra Chandio, and Fatima M Anwar.“Mitigating group bias in federated learning forheterogeneous devices”. In: The 2024 ACM Conference
on Fairness, Accountability, and Transparency. 2024, pp.1043–1054.

59 Kewei Sha et al. “On security challenges and openissues in Internet of Things”. In: Future Generation
Computer Systems 83 (2018), pp. 326–337.

60 Kewei Sha et al. “A survey of edge computing‐baseddesigns for IoT security”. In: Digital Communications and
Networks 6. 2 (2020), pp. 195–202.

61 Nima Shahbazi et al. “Representation bias in data: Asurvey on identification and resolution techniques”. In:
ACM Computing Surveys 55. 13s (2023), pp. 1–39.

62 Swapnil Sadashiv Shinde et al. “On the design offederated learning in latency and energy constrainedcomputation offloading operations in vehicular edgecomputing systems”. In: IEEE Transactions on Vehicular
Technology 71. 2 (2021), pp. 2041–2057.

63 Indro Spinelli et al. “FairDrop: Biased edge dropout forenhancing fairness in graph representation learning”. In:
IEEE Transactions on Artificial Intelligence 3. 3 (2021),pp. 344–354.

64 Frank Stinar, Zihan Xiong, and Nigel Bosch. “Anapproach to improve k‐anonymization practices ineducational data mining”. In: Journal of Educational Data
Mining 16. 1 (2024), pp. 61–83.

65 Allison Woodruff et al. “A qualitative exploration ofperceptions of algorithmic fairness”. In: Proceedings of

the 2018 Chi Conference on Human Factors in
Computing Systems. 2018, pp. 1–14.

66 Le Wu et al. “Learning fair representations forrecommendation: A graph‐based perspective”. In:
Proceedings of the Web Conference 2021. 2021, pp.2198–2208.

67 Qi Xia et al. “A survey of federated learning for edgecomputing: Research problems and solutions”. In: High‐
Confidence Computing 1. 1 (2021), p. 100008.

68 Xiaoyan Yan, Qilin Wu, and Youming Sun. “Ahomomorphic encryption and privacy protection methodbased on blockchain and edge computing”. In: Wireless
Communications and Mobile Computing 2020. 1 (2020),p. 8832341.

69 Aiting Yao et al. “Differential privacy in edgecomputing‐based smart city Applications: Securityissues, solutions and future directions”. In: Array 19(2023), p. 100293.
70 Yunfan Ye et al. “EdgeFed: Optimized federatedlearning based on edge computing”. In: IEEE Access 8(2020), pp. 209191–209198.
71 Tiankuo Yu et al. “Bias‐compensation augmentationlearning for semantic segmentation in UAV networks”.In: IEEE Internet of Things Journal 11. 12 (2024), pp.21261–21273.
72 Muhammad Bilal Zafar et al. “Fairness constraints:Mechanisms for fair classification”. In: Artificial

Intelligence and Statistics. PMLR. 2017, pp. 962–970.
73 Ruslan Zhagypar et al. “Characterization of the globalbias problem in aerial federated learning”. In: IEEE

Wireless Communications Letters 12. 8 (2023), pp. 1339–1343.
74 Xuejun Zhang et al. “Differential privacy‐based indoorlocalization privacy protection in edge computing”. In:

2019 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).IEEE. 2019, pp. 491–496.

75 Lejun Zhang et al. “Secure and efficient data storageand sharing scheme for blockchain‐based mobile‐edgecomputing”. In: Transactions on Emerging
Telecommunications Technologies 32. 10 (2021), e4315.

76 Shiwen Zhang et al. “A caching‐based dual k‐anonymouslocation privacy‐preserving scheme for edge computing”.In: IEEE Internet of Things Journal 10. 11 (2023), pp.9768–9781.
Note* This chapter is contributed by Kewei Sha, KomalaSubramanyam Cherukuri, and Haihua Chen.

9
Conclusion and Future Directions

9.1 Key Insights and ConclusionsThe rapid growth of applications and services in theInternet of Everything (IoE) has given rise to edgecomputing, establishing it as a critical hardware andsoftware platform in the era of edge‐based big dataprocessing. In the IoE era, the enormous volumes of datagenerated by edge devices, coupled with the demand forreal‐time processing, have introduced new challengesrelated to transmission bandwidth, computational load, anddata privacy under the traditional cloud computing model.Edge computing addresses these challenges by introducinga decentralized data‐processing model, which not onlyreduces response times and improves reliability but alsoenables more applications to migrate from cloud computingcenters to network edge devices through context‐awaretechnologies. Processing data at the edge, withoutuploading it to the cloud, significantly reduces transmissionbandwidth requirements, lowers energy consumption fordata transmission, alleviates the load on cloud centers, andenhances data privacy.This book has examined edge computing from multipleperspectives, including its necessity, fundamentalprinciples, architecture and components, edge intelligence,challenges and opportunities, future trends, practicalapplications, and privacy and bias concerns. A keytakeaway is that edge computing and cloud computing arenot mutually exclusive but rather complementary. The edgecomputing model still supports traditional cloud computingwhile also enabling remote access to computing resources,

facilitating data sharing and collaboration. Bydecentralizing computing power from centralized cloudinfrastructures to edge devices, edge computing providessignificant benefits, such as reduced latency and enhancedprivacy.As artificial intelligence (AI) rapidly evolves, the integrationof edge computing with AI has given rise to edgeintelligence, laying the foundation for efficient machinelearning and the broader adoption of AI technologies. Thisbook has highlighted the importance of edge intelligence,focusing on the available hardware and software support,the enabling technologies, and the strategies for designingthese systems.To accelerate the deployment and adoption of edgecomputing, this book identifies several key issues that areurgently needed to be addressed in current research. Theseissues are multifaceted, including programmability, datamanagement, resource allocation, and security. Thesechallenges are critical barriers to the seamless integrationand widespread adoption of edge computing technologies.It also discussed the importance of developing robustdeployment strategies and business models to sustain thegrowth of edge computing.With a forward‐looking perspective, we emphasized theimportance of staying ahead of technological advancementsand exploring new paradigms like sky computing and metacomputing. We also identified emerging trends, such as theintegration of edge computing with AI, the potential impactof 6G, and the exciting possibilities of edge computing inspace exploration.Through various studies, we demonstrated thetransformative impact of edge computing across industrieslike manufacturing, telecommunications, healthcare, smartcities, the Internet of Things, retail, and autonomous

vehicles. These case studies provide concrete evidence ofhow edge computing is being applied to solve real‐worldproblems while also highlighting the challenges and lessonslearned from these implementations, offering systemprototypes that can serve as valuable references for furtherresearch.As with any new information technology, its acceptance bythe industry hinges on ensuring safety and reliability.Similarly, the security of edge computing is a majorconcern for both academia and industry. Before edgecomputing can be effectively applied in smart cities,intelligent transportation, smart homes, smartmanufacturing, or collaborative platforms, security andprivacy protection issues must be addressed. This bookemphasized the need for robust privacy protectionmechanisms and highlighted the risks associated with thedigital divide, with the hope of stimulating further researchand development in the field of edge computing securityand privacy.
9.2 So, What Is Next?Building on the key insights gathered earlier, we concludethis book with recommendations for future research toaddress the challenges and opportunities within edgecomputing.In Chapter 6, we explored the future trends of edgecomputing, highlighting the promising directions this fieldis heading toward. However, as our case studies inChapter 7 illustrate, the integration of edge computingacross various societal domains, such as healthcare, smartcities, and urban planning, remains a complex endeavor.Significant research and development efforts are stillneeded to fully leverage the potential of edge computing.The challenges identified in Chapter 5 underscore the need

for innovative solutions to seamlessly integrate edgecomputing into various industries.Despite nearly a decade of development, edge computing isat a critical juncture where its role is becomingincreasingly vital, especially as AI models grow incomplexity and size. The dominance of large AI models by afew leading enterprises has created a significant barrier totheir deployment on resource‐constrained edge devices,limiting their widespread adoption.From a model perspective, enabling powerful AI models onedge devices with limited resources is, and will continue tobe, a major research focus. In Chapter 4, we thoroughlyreviewed current model compression techniques, such asquantization, pruning, and knowledge distillation. Thesemethods are essential for making advanced AI modelsfeasible on edge devices. However, as AI models becomemore sophisticated and complicated, there is an ongoingneed to develop even more effective compressiontechniques that maintain high performance whileminimizing computational demands.From a system perspective, maximizing the potential ofedge computing remains an urgent priority. In Chapter 3,we discussed several open problems that futureresearchers should consider, not only when exploringexisting edge‐cloud collaborations but also wheninvestigating emerging technologies.We are open to embracing emerging technologies andwould eager to see how new technologies integrate withedge computing to guide the next phase of innovation inthis field. Although quantum computing is still in its earlystages and is not within the scope of this book, it holds thepotential to revolutionize edge computing by providingunparalleled computational power, enabling edge devices

to perform tasks that are currently impossible due toresource constraints.As a computing paradigm intended for everyday use,privacy and security will always be the top concerns inedge computing. Future research should prioritize thedevelopment of advanced security frameworks, such aslightweight encryption techniques, secure data‐sharingprotocols, and optimized privacy‐preserving AI models.Although not covered in this book, blockchain technologycan be explored as a potential solution for enhancingsecurity and trustworthiness in decentralized edgenetworks. We must ensure that edge computing isdeveloped in a way that is safe and secure, ethical, andinclusive.These recommendations are intended to guide the nextwave of research and innovation in edge computing,addressing both the challenges and the opportunities thatlie ahead. By advancing in these areas, the edge computingcommunity can continue to push the boundaries of what ispossible, leading to more powerful, efficient, and equitablesystems that will play a pivotal role in the future oftechnology.We hope this book will inspire further development in edgecomputing across both industry and academia, attracting agrowing number of researchers and practitioners fromfields such as computer science and engineering to delvedeeper into this area. By leveraging the wealth ofknowledge accumulated in current information technology,we aim to identify and address the remaining scientific andengineering challenges in edge computing research.Collaboration beyond traditional technical fields—such ascomputer systems, communications, networks, andapplications—is essential to further promote the realizationand adoption of edge computing frameworks and models. It

is equally important to involve professionals and researchinstitutions from other related fields, such asenvironmental science, public health, law enforcement,firefighting, and public services, to foster interdisciplinarycollaboration between computer scientists and expertsfrom various industries. This collaboration will be crucial insolving real‐world problems and exploring new frontiers,ensuring that the benefits of edge computing extend acrossall aspects of society.Edge computing represents a collaborative computingmodel that integrates diverse resources, offering anunprecedented opportunity in the history of computerscience. Over the past decade, edge computing has madesignificant strides, and we are confident that the nextdecade will see even remarkable developments in edgecomputing and edge intelligence. As we enter the IoE era,the synergy between AI and edge computing will drive anew revolution in information technology, propellinghumanity into a new era of technological advancement.

Index
aAI modelsfederated learning  63inference on edge  107training on edge  104–105algorithmsload balancing  133optimization algorithms  176–177applicationsautonomous vehicles  194, 213–217healthcare  200–203industrial IoT  210–211smart cities  203–209architectureedge computing architecture  47–49, 53–54, 71, 146,197, 199, 210network architecture  10–11, 30, 61, 68–69, 79, 84, 175,177–178, 186system architecture  12, 139, 183

artificial intelligence (AI)deep learning  40, 60, 79, 83, 85–88, 91, 94, 96, 101–104, 108, 111, 144, 147, 198, 211, 223, 246edge AI  17, 63, 70, 77–80, 91–111, 144machine learning  14, 17, 26, 51, 59, 63, 70, 77–78, 84–88, 90, 104, 108, 142, 144, 198–199, 202–203, 214, 223,246, 253
bbackground of edge computing  15bandwidthlatency and bandwidth  10, 37, 57, 63, 142–143, 171,200, 202–203, 205–207, 210–211network bandwidth  3, 5, 27, 36, 48, 77, 102, 142bias  223–246, 253big datadata analytics  61data processing  3, 4, 8, 18, 23, 26, 35–36, 39–40, 42,253data storage  8, 31, 41, 51, 59, 68, 129, 138–139, 143,145, 159, 193, 203, 225, 233blockchain  138–140, 151, 202, 210, 255
ccase studiesautonomous vehicles  213–217healthcare applications  200–203smart cities  203–209

challengesin edge computing  123–151, 256latency challenges  214resource management  185–186security challenges  137cloud computingcloud data centers  16, 39, 53, 65, 143, 182cloud integration  70, 158edge vs. cloud  33–41collaborative models  60communication5G networks  30, 57, 69, 174–175, 194low‐latency communication  182compressionmodel compression  94, 100, 108, 111–112, 172, 255computational powerenergy efficiency  6, 69, 85, 104, 107, 148, 194, 203–204, 209resource allocation  89, 130–136, 214, 216, 254
d

datadata privacy  6, 8, 36, 50, 61, 127–128, 172, 202–203,205–207, 213, 215, 225–226, 228–230, 233–235, 253data security  6, 28, 36, 41, 49, 62, 136, 138–139, 194,200, 202–203, 206, 224real‐time data  1, 3–4, 31, 40, 48–51, 58, 61–63, 86, 88,90, 130, 138, 171, 178, 193–198, 200, 202–204, 206–207,210–211, 214, 216–217deep learningmodel training  88neural networks  82, 92, 94, 107, 144, 165, 234devicesedge devices  3–4, 8, 9–11, 14, 17, 23, 27–32, 37, 39–40,47–48, 54–55, 63–65, 70, 78, 81–83, 85, 87–90, 97, 100–102, 104–108, 111–112, 124–129, 131–133, 135–138,143–145, 148, 151, 166–173, 200, 202–203, 206, 210,214, 225, 234, 236, 242, 253, 255IoT devices  4, 15, 47, 82, 87, 128, 140, 146, 166, 194,200, 204–208, 210–211mobile devices  5, 10–11, 15, 35, 55, 82, 84–85, 103digital divide  236–245, 254distributed computingdistributed network  5, 47, 68–69distributed storage  9, 139, 148distributed systems  9, 25–26, 66, 130, 140, 147–148federated learning  63, 105, 168, 213, 234–236
e

edge computingapplications  193–217architecture  47–49, 53–54, 71, 146, 197, 199, 210challenges  39–41, 123–151, 256environments  2, 6, 8, 10–11, 24–25, 31–33, 52–53, 55,57, 61–63, 65–67, 69–71, 79, 83, 87–88, 90–91, 102, 104,107, 111, 125–127, 130–131, 133, 136, 138–141, 143–146, 149, 159, 166, 168, 171, 178, 183, 186, 195–197,203–208, 210–212, 216, 224–225, 227, 236, 242, 245–246future directions  206, 253–256in healthcare  201integration  1–2, 12, 14, 30–31, 35, 40, 42, 53, 57, 59,65, 70–71, 125, 138–139, 142–147, 151, 158–159, 161,164–174, 179–180, 200–212, 244, 253–255in manufacturing  196models  7–10, 55–65, 147–149privacy  6, 8, 36, 50, 61, 127–128, 136, 172, 202–203,205–207, 213, 215, 225–226, 229–230, 233–235, 253security  28, 136in smart cities  204trends  12, 17, 70, 157–186, 194, 240, 253–254edge intelligenceknowledge distillation  14, 91, 98–100, 108, 111, 168–169, 242, 255low‐rank approximation  97–98pruning  85, 91–94, 100, 111, 144, 169, 255quantization  87, 94–97, 100, 106, 108, 144, 169–170,172, 255

emerging paradigms  157–186energy efficiencypower consumption  81
ffog computing  7, 11–12, 203–205, 209fundamental principles  23–42, 253future directions  206, 253–256
hhardwareedge devices  81–86hardware‐software codesign  101–102healthcarepredictive maintenance  200, 203remote patient monitoring  194, 200, 203
iinfrastructure  3, 6, 11, 13, 34, 41, 47–55, 65–69, 123,136, 142–143, 146, 149, 151, 158, 175, 183, 198–200, 203,206–208, 215, 217integration  1–2, 12, 14, 30–31, 35, 40, 42, 53, 57, 59, 65,70–71, 125, 138–139, 142–147, 151, 158, 159, 161, 164–174, 179–180, 200–212, 244, 253–255

internet of things (IoT)IoT applications  5–6, 50, 84, 210–212IoT devices  4, 15, 47, 82, 87, 128, 140, 146, 166, 194,200, 204–207, 210–211
llatencylow latency  6, 14, 23, 31, 36, 47, 52, 55, 60–61, 65, 69,103, 111, 130, 143, 146, 171–172, 182, 184–185, 194,197–199, 201, 204–205, 207, 209–210, 213–215load balancingresource allocation  133task scheduling  131
mmachine learningedge AI  17, 63, 70, 86, 144model compression  94, 100, 108, 111–112, 172model inference  107model training  104, 215, 235, 241, 243mobile edge computing (MEC)  10–11, 55, 176applications  176
nnetworkingedge networking  65–665G networks  30, 57, 69, 174–175, 194

nodescloud nodes  37, 38edge nodes  10–11, 33, 37–38, 41, 48, 52–53, 57–58, 60–65, 68–71, 104, 124–126, 128–129, 131, 133, 142–143,148–149, 151, 167–168, 183, 198–199, 225, 232, 236–237
ooptimizationperformance optimization  90resource optimization  130–136, 216
pprivacydata privacy  6, 8, 36, 50, 61, 127–128, 136, 172, 202–203, 205–207, 213, 215, 225–226, 229–230, 233–235, 253privacy concerns  139, 167, 170, 207, 223–225, 227, 245privacy‐preserving  223–224, 227–235, 246, 255programmability  10, 54–55, 123–130, 254
rreal‐time processingreal‐time analytics  14, 26, 51, 200real‐world case studies  193resource managementresource allocation  58, 60, 70, 89, 130–136, 202, 214resource optimization  130–136, 216
s

security  136–142in edge computing  28, 136sky computing  53, 158–161, 163, 186, 254smart citiesurban  195, 200, 204–209storagecache  52data storage  8, 28, 31, 41, 51, 59, 129, 138–139, 143,159, 193, 203, 225, 233
ttechnologiesblockchain  138–140, 151, 202, 210, 255emerging technologies  157–186threat  82, 137–138, 216trends  12, 17, 70, 157–186, 194, 240, 253–254
vvehiclesautonomous vehicles  14, 86, 89, 137, 139, 145, 171,194, 212–217, 224, 254connected vehicles  49, 58, 78, 139, 214
wwireless communication5G networks  30, 57, 69, 174–175, 194low‐latency communication  65, 182, 185, 198, 213, 215

WILEY END USER LICENSE
AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebookEULA.

http://www.wiley.com/go/eula

	Table of Contents
	Title Page
	Copyright
	About the Authors
	Preface
	About the Companion Website
	1 Why Do We Need Edge Computing?
	1.1 The Background of the Emergence
	1.2 The Evolutionary History
	1.3 What Is Edge Computing?
	1.4 Summary and Practice
	Chapter 1 Suggested Papers
	References

	2 Fundamentals of Edge Computing
	2.1 Distributed Computing
	2.2 The Basic Concept and Key Characteristics of Edge Computing
	2.3 Edge Computing vs. Cloud Computing
	2.4 Summary and Practice
	Chapter 2 Suggested Papers
	References

	3 Architecture and Components of Edge Computing*
	3.1 Edge Infrastructure
	3.2 Edge Computing Models
	3.3 Networking in Edge Computing
	3.4 Summary and Practice
	Chapter 3 Suggested Papers
	References
	Note

	4 Toward Edge Intelligence*
	4.1 What Is Edge Intelligence?
	4.2 Hardware and Software Support
	4.3 Technologies Enabling Edge Intelligence
	4.4 Edge Intelligent System Design and Optimization
	4.5 Summary and Practice
	Chapter 4 Suggested Papers
	References
	Note

	5 Challenges and Solutions in Edge Computing*
	5.1 Programmability and Data Management
	5.2 Resource Allocation and Optimization
	5.3 Security, Privacy, and Service Management
	5.4 Deployment Strategies and Integration
	5.5 Foundations and Business Models
	5.6 Summary and Practice
	Chapter 5 Suggested Papers
	References
	Note

	6 Future Trends and Emerging Technologies*
	6.1 Edge Computing and New Paradigm
	6.2 Integration with Artificial Intelligence
	6.3 6G and Edge Computing
	6.4 Edge Computing in Space Exploration
	6.5 Summary and Practice
	Chapter 6 Suggested Papers
	References
	Note

	7 Case Studies and Practical Applications*
	7.1 Manufacturing
	7.2 Telecommunications
	7.3 Healthcare
	7.4 Smart Cities
	7.5 Internet of Things
	7.6 Retail
	7.7 Autonomous Vehicles
	7.8 Summary and Practice
	Chapter 7 Suggested Papers
	References
	Note

	8 Privacy and Bias in Edge Computing*
	8.1 Privacy in Edge Computing
	8.2 Accessibility and Digital Divide
	8.3 Summary and Practice
	Chapter 8 Suggested Papers
	References
	Note

	9 Conclusion and Future Directions
	9.1 Key Insights and Conclusions
	9.2 So, What Is Next?

	Index
	End User License Agreement

