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Preface

Over the past decade, edge computing's rapid evolution has
fundamentally transformed how data is processed, stored,
and utilized across multiple industry sectors, such as smart
manufacturing, healthcare, smart cities, and
transportation. As a critical enabler of technologies such as
the Internet of Things (IoT), autonomous systems, and real-
time analytics, edge computing has progressed from a
nascent concept to widespread adoption. Despite this
remarkable growth, there remains a lack of educational
resources dedicated to equipping the next generation of the
workforce with the knowledge and skills needed to advance
edge computing further.

This book was motivated to address that gap, offering a
comprehensive introduction to edge computing's principles,
architectures, applications, and challenges. It aims to
provide readers, ranging from students to professionals,
with a solid foundation in edge computing, enabling them
to understand its current state, tackle its challenges, and
drive its development. By bridging theory and practice, this
book aspires to inspire innovation, foster collaboration, and
promote growth in this rapidly evolving field.

Designed as both a textbook and a reference guide, this
book includes practice questions, course projects, and
curated reading materials for each chapter to enhance
learning. Readers with diverse interests and goals can
navigate directly to the chapters most relevant to them,
making the book a flexible resource for students,
educators, researchers, and professionals alike.

The book is structured into nine chapters. Chapter 1
introduces the importance of edge computing, providing its



background and evolutionary history. Chapter 2 lays the
groundwork, covering fundamental principles, models, and
technologies that underpin edge computing. Chapter 3
delves into the architecture and components of edge
computing, including infrastructure and collaborative
models. Chapter 4 transitions into edge intelligence by
highlighting the integration of artificial intelligence with
edge computing. Chapter 5 addresses key challenges such
as programmability, resource optimization, and security,
while proposing potential solutions. Chapter 6 looks to the
future, discussing emerging paradigms like sky computing,
6G, and edge computing in space exploration. Chapter 7
provides practical insights through real-world case studies,
illustrating edge computing's impact on industries such as
manufacturing, healthcare, smart cities, and more. Chapter
8 examines privacy concerns and the digital divide,
exploring biases, their impacts, and mitigation strategies in
edge computing. Chapter 9 concludes the book.

This endeavor would not have been possible without the
unwavering dedication and expertise of the team behind
this book. We are deeply grateful to the contributors,
editors, and reviewers whose insights and hard work
shaped this book. In particular, we extend our heartfelt
thanks to Dr. Haihua Chen (University of North Texas), Dr.
Shihong Hu (Hohai University), Dr. Sidi Lu (William &
Marry), Dr. Kewei Sha (University of North Texas), Dr.
Qingyang Zhang (Anhui University), Dr. Xingzhou Zhang
(Chinese Academy of Science), and PhD students Komala
Subramanyam Cherukuri (University of North Texas),
Yuankai He (University of Delaware), Shaibal Saha
(Oakland University), Qiren Wang (University of Delaware),
Yichen Xia (University of Delaware), and Yongtao Yao
(University of Delaware).

To all the readers, we hope you enjoy reading the book and
find the book serves as both a resource and an inspiration



as you explore the exciting world of edge computing.

January,
2025

Lanyu Xu
Rochester,
United States
Weisong Shi
Newark, United
States
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1
Why Do We Need Edge Computing?

What is edge computing? Why did it become popular after
being proposed? What are the relationships between edge
computing and IoT/Cloud Computing? In this chapter, we
will answer these three questions by introducing the
background, the evolutionary history, and the concept of
edge computing.

1.1 The Background of the
Emergence

To answer the question of this chapter, let us trace back to
when edge computing was proposed, back to the big data
era when the Internet of Things (IoT) and cloud computing
were blooming.

The IoT technology [3] aims to connect physical objects to
the Internet according to the communication protocols of
IoT, utilizing technologies such as RFID (radio frequency
identification), wireless data communication, and GPS
(global positioning system). This enables information
exchange for intelligent identification, positioning,
tracking, monitoring, and management of Internet
resources. 10T has significantly expanded with the
advancement of computer and network communication
technologies. It now encompasses the integration of almost
all information technologies with computer and network
technologies, facilitating real-time data sharing between
objects and achieving intelligent real-time data collection,
transmission, processing, and execution. The concept of
“computer information perception without human



intervention” has gradually been applied to fields such as
wearable devices, smart homes, environmental sensing,
intelligent transportation systems, and smart
manufacturing [18, 36]. Key technologies involved in IoT
include:

« Sensor Technology: This involves acquiring
information from natural sources, processing
(transforming), and identifying it. Sensor technology is
a critical aspect of computer applications, as it senses
(or responds to) and detects specific information from
the measured object, converting it into output signals
according to certain rules.

« RFID Technology: This comprehensive technology
integrates radio frequency and embedded technologies
to automatically identify target objects and obtain
related data through radio frequency signals. The
identification process does not require human
intervention and can operate in various harsh
environments, with promising and broad applications in
automatic identification, logistics management, and
more.

- Embedded System Technology: This is a complex
technology that integrates computer hardware and
software, sensor technology, integrated circuit
technology, and electronic application technology. Over
the decades, intelligent terminal products
characterized by embedded systems have become
ubiquitous, ranging from smartwatches to aerospace
satellite systems. Embedded systems are transforming
people's lives, driving industrial production, and
advancing the defense industry. If we make a simple
analogy of the IoT to the human body, sensors are akin
to human senses like eyes, nose, and skin; the network
is the nervous system transmitting information, and the



embedded system is the brain that classifies and
processes the received information.

Later on, with the rapid development of IoT and the
widespread adoption of 4G/5G wireless networks, the era
of the Internet of Everything (IoE) [11] has arrived. Cisco
introduced the concept of IoE in December 2012. It
represents a new network architecture for future Internet
connectivity and the evolution of 10T, enhancing the
network's intelligent processing and security features. IoE
employs a distributed structure, integrating application-
centric networks, computing, and storage on a new
platform. It is driven by IP settings, global higher
bandwidth access, and IPv6, supporting hundreds of
millions of edge terminals and devices connected to the
Internet. Compared to 10T, IoE not only involves “thing-to-
thing” connections, but also introduces a higher level of
“human-to-thing” connectivity. Its distinguishing feature is
that any “thing” will possess contextual awareness,
enhanced computing capabilities, and sensing abilities.

Integrating humans and information into the Internet, the
network will have billions or even trillions of connected
nodes. The IoE is built on the physical network, enhancing
network intelligence to achieve integration, coordination,
and personalization among the “things” on the internet.

Application services based on the IoE platform require
shorter response times and will generate a large amount of
data involving personal privacy. For example, sensors and
cameras installed on autonomous vehicles capture road
condition information in real time; one car with five
cameras can generate more than 24 terabytes (TB) data
per day [17]. According to the Insurance Institute for
Highway Safety, there will be 3.5 million self-driving
vehicles on U.S. roads by 2025 and 4.5 million by 2030
[21]. The Boeing-787 generates about 5 gigabytes (GB) of



data per second and requires real-time processing of the
data. In Beijing, China, the electric vehicle monitoring
platform can provide continuous 7 x 24 -hour real-time
monitoring for 10,000 electric vehicles and forward data to
various enterprise platforms at a rate of one data point
every 10 seconds per vehicle. In terms of social security,
the United States has deployed over 30 million surveillance
cameras, generating more than 4 billion hours of video data
each week. China's “Skynet” surveillance network, used for
crime prevention, has installed over 20 million high-
definition surveillance cameras nationwide, monitoring and
recording pedestrians and vehicles in real time.

Since the concept was proposed in 2005, cloud computing
has been widely applied, changing how people work and
live. SaaS (Software as a Service) is commonly used in data
centers of major IT companies like Google, Twitter,
Facebook, and Baidu. Scalable infrastructure and
processing engines supporting cloud services have
significantly impacted application services such as Google
File System (GFS), MapReduce programming model,
Hadoop (a distributed system developed by Apache
Foundation), and Spark (the in-memory computing
framework designed by the AMP Lab at the University of
California Berkeley). However, in the context of IoT and
similar applications, data is geographically dispersed and
demands higher response times and security. Although
cloud computing provides an efficient platform for big data
processing, the network bandwidth growth rate cannot
keep up with the data growth rate. The cost reduction rate
of network bandwidth is much slower than that of
hardware resources like CPU and memory, and the
complex network environment makes it challenging to
significantly improve network latency. Therefore, the
traditional cloud computing model will struggle to support
application services based on IoE efficiently and in real



time, requiring solutions to address the bandwidth and
latency bottlenecks.

With the rapid development and widespread application of
the IoE, edge devices are transitioning from primarily
serving as data consumers to serving as both data
producers and consumers. Simultaneously, network edge
devices are gradually capable of utilizing the collected real
time data for pattern recognition, predictive analysis or
optimization, and intelligent processing. In the edge
computing model, computing resources are closer to the
data source, and network edge devices now have sufficient
computational power to process the raw data locally and
send the results to the cloud computing center locally. The
edge computing model not only reduces the bandwidth
pressure in network transmission, speeding up data
analysis and processing, but also lowers the risk of privacy
leaks for sensitive terminal data.

Currently, big data processing is shifting from the
centralized processing era centered on cloud computing
(we refer to the years from 2005 to 2015 as the centralized
big data processing era) to the edge computing era
centered on the IoE (we refer to it as the edge-based big
data processing era). During the centralized big data
processing era, the focus was more on centralized storage
and processing of big data, achieved by building cloud
computing centers and leveraging their powerful
computing capabilities to solve computational and storage
issues centrally. In contrast, in the edge-based big data
processing era, network edge devices generate massive
real-time data. In 2018, Cisco's Global Cloud Index
estimated that nearly 850 zettabytes (ZB) will be generated
by all people, machines, and things by 2021. Yet only
around 10% is classed as useful data; useful data is
predicted to four times exceed data center traffic (21 ZB
per year) [10]. From 2018 to 2023, the average number of



devices owned per person worldwide increased from 2.4 to
3.6. Specifically, in North America, on average, one person
owned eight devices in 2018 and 13 devices in 2023 [38].
According to Statista, the number of IoT devices connected
to the network was 15.14 billion in 2023 and will reach
29.42 billion in 2030 [35]. This mismatch between data
producing and data consuming requires the emergence of
an alternation for cloud-based data centers. Instead of
purely relying on cloud computing, data can be stored,
processed, and analyzed at the network edge. These edge
devices will be deployed on edge computing platforms
supporting real-time data processing, providing users with
numerous service or function interfaces, which users can
invoke to obtain the necessary edge computing services.

Therefore, the linearly growing centralized cloud
computing capacity can no longer match the exponential
growth of massive edge data. Single computing resources
based on the cloud computing model can no longer meet
the demands for real-time processing, security, and low
energy consumption in big data processing. Based on the
existing centralized big data processing centered on the
cloud computing model, there is an urgent need for edge
big data processing technology centered on the edge
computing model to handle the vast edge data. The two
complement each other, applied to big data processing at
both the cloud center and the edge end, addressing the
inadequacies of cloud computing services in the IoE era.

When observing the data explosion in three dimensions:
velocity, variety, and volume, we will find that the
emergence and rapid development of edge computing is
inevitable (Figure 1.1). The cloud-centralized computing
paradigm performs well when the data is generated with a
confined speed, size, and format. While in the IoE era, data
is increasingly produced at the network's edge regarding
velocity, variety, and volume. In terms of variety, different



types of data (e.g., text, audio, and photo) are generated
every day and every second from numerous devices (e.g.,
IoT, web browser, camera, and social media). These data
are generated with different velocities (e.g., real time, near
real time, periodic, and batch generated). Therefore,
storage and process requirements for these data will be
different. With the tremendous number of devices and the
frequent speed of data generation, there is no surprise that
the volume of data generated is increasing dramatically.
Megabytes (MB) and TB have become the typical units. In
fact, as of 2024, the amount of data generated per day is
around 328.77 million TB, which equals 0.33 ZB [13]. Given
these factors, relying purely on the cloud for all data
processing is impossible. This is not just because of the
computing pressure brought to the cloud computation
center but also because the bandwidth capability required
for transmitting this amount of data is challenging. The
only solution to process the data reliably and in a timely
manner is edge computing, which ensures a shorter
response time, more efficient processing, and smaller
network pressure.



Volume

Figure 1.1 The increase of data pushes the evolution of
edge computing.

Compared to cloud computing, edge computing can better
support mobile computing and IoT applications, offering
the following distinct advantages:

« Greatly Alleviates Network Bandwidth and Data
Center Pressure: With the development of 10T, global
devices will generate massive amounts of data.
However, only a small portion of this data is critical,
while most of it is temporary and does not need long-
term storage (the amount of data generated by devices
is two orders of magnitude higher than the amount of
data that needs to be stored). Edge computing can fully
utilize geographically distributed network edges to
process a large amount of temporary data, thereby
reducing the pressure on network bandwidth and data
centers.

- Enhances Service Responsiveness: The inherent
limitations of mobile devices in computing, storage, and
power resources are evident. Cloud computing can
provide services to mobile devices to address these
deficiencies. However, network transmission speeds



are constrained by the development of communication
technologies, and in complex network environments,
issues such as unstable connections and routing further
exacerbate latency, jitter, and slow data transmission
speeds, severely affecting the responsiveness of cloud
services. Edge computing offers services near the user,
ensuring low network latency through proximity and
reducing network jitter with more straightforward
routing. With the development of 5G and 6G, the
diverse application scenarios and differentiated service
requirements pose challenges to 5G/6G networks
regarding throughput, latency, number of connections,
and reliability. Edge computing and 5G/6G
technologies complement each other, with edge
computing leveraging localization, proximity, and low
latency to drive 5G/6G architectural changes, while
5G/6G technology is essential for reducing data
transmission latency and enhancing service
responsiveness in edge computing systems.

Protects Privacy Data and Enhances Data
Security: Data security has always been a critical issue
in IoT applications. Surveys show that approximately
86% of the U.S. general population is concerned about
data privacy [23]. In the cloud computing model, all
data and applications are stored in data centers,
making it difficult for users to have fine-grained control
over data access and usage. Edge computing provides
the infrastructure for storing and using critical privacy
data, restricting the operation of privacy data within
firewalls and thereby enhancing data security (for more
detailed information, see Chapter 8).



1.2 The Evolutionary History

The field of edge computing has developed rapidly since
2014. We categorize the development process into three
stages: technology preparation period, rapid growth period,
and steady development period. We use “edge computing”
as the keyword to search the number of articles published
per year in Google Scholar. As shown in Figure 1.2, before
2015, edge computing was in the technology preparation
period. Since 2015, the number of papers related to “edge
computing” has grown tenfold. Edge computing has
entered a rapid growth period. The number of papers has
been increasing and reaching a steady development period
since 2020. In this period, the development is focused on
integrating academia and industry, bringing the product
into the business, and finally facilitating peoples' daily
lives. Figure 1.3 illustrates typical events in the
development process of edge computing.

The development of edge computing is closely linked to the
evolution of data-oriented computing models. As the scale
of data increases, the demand for performance and energy
efficiency in data processing continues to grow. To address
the issues of computational load and data transmission
bandwidth in data transfer, computation, and storage
processes, researchers explored ways to enhance data-
processing capabilities near data sources even before the
advent of edge computing. This involves shifting
computational tasks from centralized computing centers to
the network edge. The main typical models include
distributed database models, peer-to-peer (P2P) computing
models, content delivery network (CDN) models, mobile
edge computing models, fog computing models, and cloud-
sea computing models. We will explain these different
models in the order of their emergence and also introduce
the history of edge computing.
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Figure 1.3 The evolution of edge computing and key
milestones.

1.2.1 Technology Preparation Period

During the technology preparation period, edge computing
went through the development process of dormancy,
presentation, definition, and generalization.

1.2.1.1 Distributed Database Models

The distributed database model results from combining
database technology and network technology. In the era of
big data, the growth in the variety and quantity of data has
made distributed databases a core technology for data
storage and processing. Distributed databases are deployed



on self-organizing network servers or dispersed across the
Internet, enterprise networks, Internet, and other
independent computers in self-organizing networks. Data is
stored on multiple machines, and operations are not limited
to a single machine but allow transactions to be executed
across multiple machines to improve database access
performance.

Distributed databases have become a core technology for
big data processing. Based on their structure, distributed
databases include homogeneous and heterogeneous
systems. The former has database instances running in
environments with the same software and hardware,
featuring a single-access interface. The latter operates in
environments where hardware, operating systems,
database management systems, and data models vary.
Based on the types of data processed, distributed databases
mainly include relational (such as Structured Query
Language, SQL), nonrelational (such as NoSQL), extensible
markup language (XML)-based, and NewSQL distributed
databases. Among these, NoSQL and NewSQL distributed
databases are the most widely used [16]. NoSQL
distributed databases, designed to meet the demands for
high concurrency, efficient storage access, high reliability,
and scalability in big data environments, are divided into
key-value stores, column stores, document-oriented
databases, and graph databases. NewSQL distributed
databases, characterized by real-time processing, complex
analysis, and fast querying, are relational distributed
databases designed for massive data storage in big data
environments, including Google Spanner, Clustrix, and
VoltDB. SQL-distributed databases are relational
distributed databases, with typical examples including
Microsoft's and Oracle's distributed databases. XML-based
distributed databases mainly store data in XML format and



are essentially document-oriented, similar to NoSQL
distributed databases [22].

Compared to edge computing models, distributed
databases provide data storage in big data environments
but pay less attention to the heterogeneous computing and
storage capabilities of the devices they reside on, focusing
mainly on achieving distributed data storage and sharing.
Distributed database technology requires significant space
and offers lower data privacy. For distributed transaction
processing across multiple databases, data consistency
technology is a major challenge for distributed databases
[14]. In edge computing models, data resides on edge
devices, offering higher privacy, reliability, and availability.
In the era of the IoE, “heterogeneous edge architectures
and the need to support multiple application services” will
become the fundamental approach for edge computing
models to handle big data processing.

1.2.1.2 Peer-to-Peer (P2P) Computing Models

P2P computing [27] is one of the early file transfer
technologies that pushed computing to the edge of the
network. The term P2P was first introduced in 2000 to
implement file-sharing systems. Since then, it has gradually
developed into an important subfield of distributed
systems. The key research topics in P2P models include
decentralization, maximizing scalability, tolerance of high-
level node churn, and preventing malicious behavior. Major
achievements in this field include:

. Distributed Hash Table (DHT), which later evolved into
the general paradigm for key-value distributed storage
in cloud computing models.

« Generalized gossip protocols, which have been widely
used for complex task processing applications beyond



simple information dissemination, such as data fusion
and topology management.

« Multimedia streaming technology, in forms such as
video on demand, real-time video, and personal
communication.

However, widespread media coverage of P2P being used
for illegal file sharing and related lawsuits has hindered the
practical recognition of some commercial technologies
based on the P2P model.

The edge computing model bears significant similarities to
P2P technology, while it expands on the latter with new
technologies and methods, extending the concept of P2P to
network edge devices. This represents a fusion of P2P
computing and cloud computing.

1.2.1.3 Content Delivery Network (CDN) Models

CDN [29] was proposed by Akamai in 1998. CDN is an
Internet-based caching network, which relies on caching
servers deployed in different places and points users'
access to the nearest caching server through load
balancing, content distribution, scheduling, and other
functional modules of the central platform. Therefore, CDN
can reduce network congestion and improve user access
response speed and hit rate. It has gained significant
attention from both academia and industry since it was
proposed. Companies like Amazon [2] and Akamai [1]
possess mature CDN technologies that provide users with
the expected performance and experience while reducing
the operational pressures on service providers.

Active content distribution networks (ACDNSs), an
improvement over traditional CDNs, help content providers
avoid the hassle of predicting the preconfiguring resources
and determining their locations [30]. ACDN allows



applications to be deployed on any server and uses newly
designed algorithms to replicate and migrate applications
between servers as needed.

The concept of edge computing can be traced back to
around the year 2000, when CDNs were deployed large
scale. At that time, major companies like Akamai
announced the distribution of web-based content through
CDN edge servers. The primary goal of this method was to
benefit from the short distances and available resources of
CDNs to achieve large-scale scalability. In the early days of
edge computing, the “edge” was limited to CDN cache
servers distributed around the world. However, today's
development of edge computing has far exceeded the scope
of CDNs. The “edge” in the edge computing model is not
confined to edge nodes; it includes any computational,
storage, and networking resources along the path from
data sources to cloud computing centers.

1.2.1.4 Function Cache and Cloudlet

To enable static content distribution, CDN emphasizes the
backup and caching of data, while edge computing focuses
more on function caching to improve computational
capabilities. Function cache was proposed by Ravi et al.
[31], where it is applied to personalized mailbox
management services to save latency and bandwidth.
Satyanarayanan et al. [33] introduced the concept of
Cloudlet, which is a trusted, small-scale, and resource-rich
host, located at the edge of the network, connected to the
Internet, and can be accessed by mobile devices to provide
services. Cloudlet is also known as “small cloud” as it can
provide services for users, similar to the cloud server. At
this point, edge computing focused on the downstream
transfer of functions from cloud servers to edge servers,
aiming to reduce bandwidth usage and minimize delays.



1.2.1.5 Mobile Edge Computing

The development of the IoE has enabled the
interconnection of numerous types of devices, such as
smartphones, tablets, wireless sensors, and wearable
devices. However, the limited energy and computing
resources of most network edge devices make the design of
IoE particularly challenging. Mobile edge computing (MEC)
[19] is a new network architecture that provides
information technology services and cloud computing
capabilities within the proximity of the mobile user's
wireless access network. It has become a standardized and
regulated technology. In 2014, the European
Telecommunications Standards Institute (ETSI) introduced
the standardization of the term MEC, highlighting that
MEC provides a new ecosystem and value chain. Utilizing
MEC, intensive mobile computing tasks can be offloaded to
nearby network edge servers. Because MEC is located
within the wireless access network and close to mobile
users, it can achieve lower latency and higher bandwidth,
thereby improving service quality and user experience.
MEC is also a key technology in the development of 5G,
helping to meet the high standards of 5G in terms of
latency, programmability, and scalability. By deploying
services and caches at the network edge, MEC reduces
congestion in the core network and efficiently responds to
use requests.

Task migration is one of the challenges in mobile
computing technology, particularly in environments where
continuous service availability and seamless user
experience are crucial. The process involves transferring
ongoing tasks from one computational node to another,
which can be triggered by various factors such as device
mobility, energy conservation needs, or load balancing
requirements. Effective task migration must minimize
latency, avoid data loss, and maintain application state



continuity, which is challenging due to the heterogeneous
and dynamic nature of mobile environments. Furthermore,
ensuring security during data transfer, managing the
energy consumption of mobile devices, and dealing with
fluctuating network conditions are additional hurdles that
need optimization solutions. As mobile computing continues
to evolve, developing robust, efficient, and secure task
migration mechanisms will be critical to fully leveraging
the potential of mobile platforms. MEC has been applied in
various scenarios, such as vehicular networks, IoT
gateways, auxiliary computing, intelligent video
acceleration, and mobile big data analysis.

MEC emphasized the establishment of edge servers
between the cloud server and edge devices to process
computing. However, mobile edge nodes are generally
considered to lack computing capabilities. In contrast, the
nodes in the edge computing model possess strong
computing capabilities. Therefore, MEC resembles the
architecture and hierarchy of an edge computing server,
functioning as an important part of edge computing.

1.2.1.6 Fog Computing

Cisco introduced fog computing in 2012 and defined fog
computing as a highly virtualized computing platform for
migrating cloud computing center tasks to network edge
devices [7]. Fog computing provides computing, storage,
and network services between end devices and traditional
cloud computing centers, complementing cloud computing.
Vaquero and Rodero-Merino [39] have provided a
comprehensive definition of fog computing, which extends
cloud-based network architecture by introducing an
intermediate layer between the cloud and mobile devices.
This intermediate layer, known as the fog layer, consists of
fog servers deployed at the network edge. Fog computing
reduces the need for multiple communications between the



cloud computing center and mobile users. It relieves the
bandwidth load and energy consumption pressure of main
links by reducing the number of communications between
cloud computing centers and mobile users. When there is a
large volume of mobile users, they can access cached
content and request specific services from the fog
computing servers. Additionally, fog computing servers can
interconnect with cloud computing centers, leveraging
their powerful computational capabilities and extensive
applications and services.

The concepts of edge computing and fog computing have
great similarities and often represent the same idea. If we
are to distinguish between the two, this book posits that
edge computing, in addition to focusing on infrastructure,
also pays attention to edge devices and places more
emphasis on the design and implementation of edge
intelligence. In contrast, fog computing focuses more on
the management of back-end distributed shared resources.
As shown in Figure 1.4, since 2017, the level of attention to
edge computing has gradually surpassed that of fog
computing, and its attention continues to rise.
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Figure 1.4 “Edge computing” and “fog computing” trends.



1.2.1.7 Cloud-Sea Computing

In the context of IoE, the amount of data to be processed
will reach ZB levels. The sensing, transmission, storage,
and processing capabilities of information systems need to
be correspondingly enhanced. To address this challenge, in
2012, the Chinese Academy of Sciences launched a ten-
year strategic priority research initiative called the Next
Generation Information and Communication Technology
(NICT) initiative. Its main purpose is to carry out research
on the “Cloud-Sea Computing System Project” [40]. It aims
to augment cloud computing by cooperation and
integration of the “cloud computing” system and the “sea
computing” system. “Sea” refers to an augmented client-
side consisting of human-facing and physical world-facing
devices and subsystems. The research focuses on proposing
system-level solutions from perspectives such as overall
system architecture, data center and server and storage
system layers, and processor chip level.

Cloud-sea computing focuses on the two ends “sea” and
“cloud” while edge computing focuses on the data path
between “sea” and “cloud.” Cloud-sea computing is a great
subset example of edge computing.

1.2.2 Rapid Growth Period

Since 2015, edge commuting has been in a rapid growth
period, attracting intensive close attention from academia
and industry.

At the government level, in May 2016, the National Science
Foundation (NSF) listed edge computing as one of the
highlighted areas in the research of computer systems. In
August 2016, NSF and Intel formed a partnership in
information center networks in wireless edge networks
(ICN-WEN) [37]. In October 2016, the NSF held the NSF
Workshop on Grand Challenges in edge computing [8]. The



workshop focused on three topics: the vision of edge
computing in the next five to ten years, the grand
challenges to achieving the vision, and the best
mechanisms for academia, industry, and the government to
attack these challenges in a cooperative way. This indicates
that the development of edge computing has attracted
great attention at the government level.

In academia, a formal definition of edge computing is given
in the paper Edge computing: vision and challenges [34].
Edge computing is defined as enabling technologies that
allow computation to be performed at the edge of the
network, processing downstream data on behalf of cloud
services, and upstream data on behalf of IoT services. This
paper pointed out the challenges of edge computing and is
one of the most cited papers in the edge computing field. In
October 2016, ACM and IEEE jointly organized the first
ACM/IEEE Symposium on Edge Computing (SEC). Since
then, the International Conference on Distributed
Computing Systems (ICDCS), the International Conference
on Computer Communications (INFOCOM), the
International Middleware Conference, and other important
international conferences have added an edge computing
track and/or workshops to their main conferences.

At the same time, multiple industry sectors have actively
promoted the development of edge computing. In
September 2015, ETSI published a white paper on MEC. In
November 2015, Cisco, ARM, Dell, Intel, Microsoft, and
Princeton University jointly established the OpenFog
Consortium, which is dedicated to the development of Fog
Reference Architecture [28]. The OpenFog Consortium
merged into the Industrial Internet-of-Things (IIoT) in
January 2019. In November 2016, Huawei, Shenyang
Institute of Automation of Chinese Academy of Sciences,
China Academy of Information and Communications
Technology (CAICT), Intel, ARM, and iSoftStone



established the Edge Computing Consortium (ECC) in
Beijing, China, which is dedicated to advancing cooperation
among industry resources from government, vendor,
academic, research, and customer sectors, and pushing
forward the sustainable development of the edge
computing industry [12]. In March 2017, the ETSI MEC
Industry Specification Working Group was formally
renamed to multiaccess edge computing, aiming to better
meet the requirements of edge computing and related
standards. Linux EdgeX Foundry was also built in 2017; it
is a vendor-neutral open-source project hosted by The
Linux Foundation. It aims to build a common open
framework for IoT edge computing. In January 2018,
Automotive ECC (AECC) was established to drive the
network and computing infrastructure needs of automotive
big data [4], which indicates that edge computing is valued
in the vehicle domain. In the same year, the Cloud Native
Computing Foundation (CNCF) Foundation and Eclipse
Foundation cooperated to bring Kubernetes, which has
been widely used in the ultra large-scale cloud computing
environment, into the edge computing scene of the IoT.
Subsequently, KubeEdge, a Kubernetes native edge
computing framework, was accepted into the CNCF
sandbox in March 2019 [24]. In April 2019, the Bio-IT
World Conference and Expos added the edge track [G],
which means that edge computing is important to the
health domain as well.

In the rapid growth period, the industry has seen
significant advancements, evidenced by the availability of
multiple edge environment solutions from major service
providers. Today, options like AWS Greengrass [3],
Microsoft Azure [25, 26], Google Cloud Platform Edge
Zones [15] have made it easier for businesses and
developers to deploy and manage edge computing
infrastructures effectively. These developments underscore



the maturity and widespread adoption of edge computing
across various sectors.

1.2.3 Intelligence Integration Period

Edge computing has seen substantial growth and
transformation in recent years, driven by the increasing
demand for low-latency data processing and efficient
resource utilization. The development of edge computing is
characterized by bringing together IoT, big data, and
mobile computing into an integrated and ubiquitous
computing platform. The capability of delivering on-
demand computing power at the edge and processing a
vast amount of data from various devices/sensors enables
real-time analytics and decision-making. A significant
advancement within this domain is the integration of edge
intelligence, where artificial intelligence (AI) and machine
learning (ML) algorithms are deployed at the edge. This
symbiotic relationship enhances the capability of edge
computing, allowing for sophisticated data analysis and
autonomous decision-making directly at the data source.
Edge intelligence empowers devices to process and act on
data locally, leading to smarter, faster, and more efficient
systems across various industries, from autonomous
vehicles to smart cities and beyond.

Building on this foundation, the intelligence integration
period marks a crucial phase in the evolution of edge
computing. Technological strategies such as pruning,
quantization, and knowledge distillation are employed to
optimize AI models for efficient operation on edge devices.
Simultaneously, Al algorithms find wide application across
systems such as smart surveillance, autonomous vehicles,
health monitoring systems, industrial IoT, smart
agriculture, and retail enhancements, further
demonstrating the pervasive impact of this integration.
These advancements not only improve responsiveness but



also deliver substantial societal benefits. While the
potential of these integrations is immense, the associated
privacy and security concerns are non-negligible and will
be discussed in Chapter 8, with deeper technological and
application-based discussions slated for Chapters 3, 4,
and 7.

1.3 What Is Edge Computing?

After exploring the background of edge computing's
emergence and examining its three distinct phases of
development, it's time to address a fundamental question:
what exactly is edge computing?

There is no standard definition for edge computing yet. In
the field of edge computing, industry experts and other
researchers have provided their own definitions. For
example, IBM views edge computing as a distributed
computing framework that brings enterprise applications
closer to data sources such as IoT devices or local edge
servers [20]. CISCO interprets edge computing as a model
that shifts computing resources from central data centers
or public clouds closer to devices, that is, embedded at the
edge of service provider networks [9]. Satyanarayanan
defines edge computing as a computing paradigm in which
substantial computing and storage resources—variously
referred to as cloudlets, micro data centers, or fog nodes—
are placed at the Internet's edge in close proximity to
mobile devices or sensors [32]. Yousefpour et al. believe
edge computing is located at the edge of the network close
to IoT devices, and edge can be more than one hop away
from IoT devices in the local IoT network [41].
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Figure 1.5 Edge computing paradigm.

Here, we give our own definition of edge computing. In the
vision paper published in 2016, we highlighted that edge
computing refers to the enabling technologies
allowing computation to be performed at the edge of
the network, on downstream data on behalf of cloud
services and upstream data on behalf of IoT services.
[34]. As shown in Figure 1.5, in our definition, “edge” can
be any computing and network resources along the path
between data sources and cloud data centers. The rationale



of edge computing is that computing should happen at
the proximity of data source, close to the users. We
can interpret the word “close” in two ways. First, the edge
computing resource and the end users may be close in the
communication network. Therefore, the small network size
makes it more feasible to deal with network instability
(e.g., bandwidth, delay, and jitter). Second, the resource
and users may be close in spatial distance, which means
they share similar environmental information. The
computing resources may leverage the shared information
to provide personalized services and improve the user
experience. Network distance and spatial distance are not
correlated to each other, and it may depend on the
concrete scenarios to decide which type of close (or both)
is appropriate.

If we view resources on the path between IoT services and
cloud services as a continuum, edge can be any computing,
storage, and network resources on this path. Depending on
the specific requirements and concrete scenarios, the edge
can be one or multiple resources (nodes), as shown in
Figure 1.6. It can be a smartphone or a desktop serving as
the edge between body things and the cloud, a gateway in a
smart home as the edge between home things and the
cloud. It can also be as small as embedded devices such as
wearable sensors and security cameras, or as big as a
micro data center. There are a huge amount of edge
resources; they are scarcely distributed around end users,
independent of each other. Edge computing is dedicated to
unifying these resources that are close to end users in
either the communication network or spatial distance and
provides computing, storage, and network services for
applications.
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If we understand edge computing from a biological
perspective, we can make the following analogy: cloud
computing is akin to the human brain, while edge
computing is akin to nerve endings. When a needle pricks
the hand, a person instinctively pulls their hand back
before the brain even realizes the prick because the reflex
action is processed by the nerve endings. This reflex action
speeds up the response, preventing further harm, while
allowing the brain to focus on more complex tasks. In the
future era of the IoE, it is impractical for cloud computing
to act as the “brain” for every device. Instead, edge
computing allows edge devices to have their own “brains.”

To have an overview of the development of edge
computing, we investigate the time period when it got
attention and became popular. If you search for “edge
computing” in Google Trends, set the time range to be
01/01/2010-now, you will see a trend like Figure 1.7.
“Interest over time” shows search interest relative to the
highest point on the chart for the given region (in this
example, we choose Worldwide) and time (from 2010 till
2024). A value of 100 means the term is in the peak



popularity. A value of 50 means that the term is half as
popular. A score of 0 means there was not enough data for
this term. We can see that the attention to edge computing
has been continuously increasing since 2016, reflecting its
importance in the development of technology. In the years
2022 to 2023, there is a drop in “interest over time” for
edge computing. At the same, another term, Edge Al, has
been raising attention and has been getting more and more
interest since 2023, when the large language model (LLM)
started to dominate the artificial intelligence (AI) and
machine learning (ML) market. The trend of these two
words perfectly shows the focus of the research area in
edge computing. Before LLM showed up, the research
focus in this field was on the computing paradigm itself,
such as the architectures and components of edge
computing (Chapter 3), edge computing hardware and
software (Sections 4.1 and 4.2), and challenges and
solutions in edge computing (Chapter 5). With the
development of Al and ML, especially LLMs, the world has
witnessed the power of AI models. However, to make these
powerful models accessible to the masses, the computing
and storage resource constraints became a significant
bottleneck. Therefore, the research focus in this field has
shifted to enabling edge-based Al by tackling the problem
of resource constraints (Sections 4.3 and 4.4).
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Figure 1.7 “Edge computing” and “edge AI” trends.



1.4 Summary and Practice

1.4.1 Summary

This chapter provides the definition and core concept of
edge computing, emphasizing that edge computing is a
continuum. The “edge” in edge computing refers to any
computing, storage, and network resources along the path
from the data source to the cloud computing center. The
discussion of the development and challenges of big data
processing and the Internet of Everything helps to
understand the background of the emergence of this
computing paradigm. This chapter also reviews the
historical development of data-oriented computing models
such as distributed databases, P2P, CDN, MEC, fog
computing, and Cloud-Sea computing. Additionally, it
introduces the current status of edge computing and its
close connection with edge intelligence.

1.4.2 Practice Questions

1. What is the “edge”?

2. What are the main characteristics that distinguish edge
computing from traditional cloud computing?

3. Identify and explain the challenges that traditional
cloud computing faces in handling the large volumes of
data generated by IoE devices.

4. Why is edge computing necessary in the era of the
Internet of Everything?

5. Explain examples of real-world applications for each
use case presented in Figure 1.6.

6. Based on the background and evolutionary history of
edge computing discussed in this chapter, what do you



think are the key challenges that could arise during the
development of edge computing?

1.4.3 Course Projects

1. Analyze real-world case studies where edge computing
is used to solve specific problems and understand why
edge computing was necessary in each case. Case
studies can be found from sources like

https://lIfedge.org/.

2. Conduct a comprehensive study of various open-source
edge platforms to understand the capabilities,
strengths, weaknesses, and potential use cases of each
platform. The platforms to be researched could include,
but are not limited to: LF Edge Projects (EdgeX
Foundry, Akraino, and Open Horizon), Kubernetes for
edge (KubeEdge, K3s, and MicroK8s), OpenFaaS.

3. Explore a basic edge computing use case and present a
simple prototype. For example, smart home, healthcare
monitoring. The prototype will involve the design of
data processing system architecture, and operate on an
edge device.

4. Build a smart home environment that leverages edge
computing to manage and control devices such as
lights, temperature sensors, security cameras locally,
instead of relying solely on cloud services.


https://lfedge.org/

Chapter 1 Suggested Papers

1 Mahadev Satyanarayanan. “The emergence of edge
computing”. In: Computer 50. 1 (2017), pp. 30-39.

2 Weisong Shi et al. “Edge computing: Vision and
challenges”. In: IEEE Internet of Things Journal 3. 5
(2016), pp. 637-646.

3 Weisong Shi, George Pallis, and Zhiwei Xu. “Edge
computing [scanning the issue]”. In: Proceedings of the
IEEE 107. 8 (2019), pp. 1474-1481.

References

1 Akamai. Amazon CloudFront.

https://www.akamai.com/solutions/content-delivery-
network. Accessed: 2024-07-24.

2 Amazon AWS. Amazon CloudFront.

https://aws.amazon.com/cloudfront/. Accessed: 2024-07-
24.

3 Kevin Ashton. “That ‘Internet of Things’ thing”. In: RFID
Journal 22. 7 (2009), pp. 97-114.

4 Automotive Edge Computing Consortium. Automotive
Edge Computing Consortium. https://aecc.org/.
Accessed: 2024-07-31.

5 AWS. IoT Edge. https://aws.amazon.com/greengrass/.
Accessed: 2024-08-26.

6 Bio-IT World. bio-IT World Conference Edge Track.
https://kubeedge.io/. Accessed: 2024-07-31.



https://www.akamai.com/solutions/content-delivery-network
https://aws.amazon.com/cloudfront/
https://aecc.org/
https://aws.amazon.com/greengrass/
https://kubeedge.io/

7 Flavio Bonomi et al. “Fog computing and its role in the
Internet of Things”. In: Proceedings of the 1st Edition of
the MCC Workshop on Mobile Cloud Computing. 2012,
pp. 13-16.

8 Weisong Shi Mung Chiang. NSF Workshop Report on
Grand Challenges in Edge Computing.
https://www.weisongshi.org/papers/shil 6-nsfreport.pdf.
Accessed: 2024-07-30.

9 Cisco. Edge Computing Solutions.
https://www.cisco.com/c/en/us/solutions/service-
provider/edge-computing.html. Accessed: 2024-05-11.

10 Cisco. Redefine Connectivity by Building a Network to
Support the Internet of Things.
https://www.cisco.com/c/en/us/solutions/service-
provider/a-network-to-support-iot.html. Accessed: 2024-
05-25.

11 Laura DeNardis. The Internet in everything. Yale
University Press, 2020.

12 Edge Computing Consortium. Introduction of Edge
Computing Consortium.

http://en.ecconsortium.net/Uploads/file/20180328/1522
232376480704 .pdf. Accessed: 2024-07-31.

13 Exploding Topics. Amount of Data Created Daily (2024).

https://explodingtopics.com/blog/data-generated-per-
day. Accessed: 2024-05-14.

14 Iggy Fernandez. No! to SQL and No! to NoSQL.
https://iggyfernandez.wordpress.com/2013/07/28/no-to-
sql-and-no-to-nosql/. Accessed: 2024-07-24.

15 Google Cloud. Google Distributed Cloud.
https://cloud.google.com/distributed-



https://www.weisongshi.org/papers/shi16-nsfreport.pdf
https://www.cisco.com/c/en/us/solutions/service-provider/edge-computing.html
https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html
http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
https://explodingtopics.com/blog/data-generated-per-day
https://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
https://cloud.google.com/distributed-cloud/edge/latest/docs

cloud/edge/latest/docs. Accessed: 2024-08-26.

16 Katarina Grolinger et al. “Data management in cloud
environments: NoSQL and NewSQL data stores”. In:
Journal of Cloud Computing: Advances, Systems and
Applications 2 (2013), pp. 1-24.

17 Adam Grzywaczewski. Training Al for Self-Driving
Vehicles: the Challenge of Scale.

https://developer.nvidia.com/blog/training-self-driving-
vehicles-challenge-scale/. Accessed: 2024-08-26.

18 Jayavardhana Gubbi et al. “Internet of Things (IoT): A
vision, architectural elements, and future directions”. In:
Future Generation Computer Systems 29. 7 (2013), pp.
1645-1660.

19 Yun Chao Hu et al. “Mobile edge computing—A key
technology towards 5G”. In: ETSI White Paper 11. 11
(2015), pp. 1-16.

20 IBM. What is edge computing?
https://www.ibm.com/topics/edge-computing. Accessed:
2024-05-11.

21 Insurance Information Institute. Background on: Self-
driving cars and insurance.
https://www.iii.org/article/background-on-self-driving-
cars-and-insurance. Accessed: 2024-08-26.

22 Hosagrahar V Jagadish et al. “Timber: A native XML
database”. In: The VLDB Journal 11 (2002), pp. 274-291.

23 KPMG. Corporate data responsibility: Bridging the
consumer trust gap.

https://kpmg.com/us/en/articles/2023/bridging-the-
trust-chasm.html. Accessed: 2024-08-26.


https://cloud.google.com/distributed-cloud/edge/latest/docs
https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale/
https://www.ibm.com/topics/edge-computing
https://www.iii.org/article/background-on-self-driving-cars-and-insurance
https://kpmg.com/us/en/articles/2023/bridging-the-trust-chasm.html

24 KubeEdge Project Authors. KubeEdge.
https://kubeedge.io/. Accessed: 2024-07-31.

25 Microsoft Azure. Azure Stack.

https://azure.microsoft.com/en-us/products/azure-
stack/. Accessed: 2024-08-26.

26 Microsoft Azure. IoT Edge.

https://azure.microsoft.com/en-us/products/iot-edge/.
Accessed: 2024-08-26.

27 Dejan S Milojicic. Peer-to-peer computing. 2002.

28 OpenFog Consortium. OpenFog Reference Architecture
for Fog Computing.
https://www.iiconsortium.org/pdf/OpenFog_Reference:A
rchitecture 2 09 _17.pdf. Accessed: 2024-07-31.

29 Gang Peng. “CDN: Content distribution network”. In:
arXiv preprint ¢s/0411069 (2004).

30 Michael Rabinovich, Zhen Xiao, and Amit Aggarwal.
“Computing on the edge: A platform for replicating
internet applications”. In: Web Content Caching and
Distribution: Proceedings of the 8th International
Workshop. Springer. 2004, pp. 57-77.

31 Jayashree Ravi, Weisong Shi, and Cheng-Zhong Xu.
“Personalized email management at network edges”. In:
IEEE Internet Computing 9. 2 (2005), pp. 54-60.

32 Mahadev Satyanarayanan. “The emergence of edge
computing”. In: Computer 50. 1 (2017), pp. 30-39.

33 Mahadev Satyanarayanan et al. “The case for VM-based
cloudlets in mobile computing”. In: IEEE Pervasive
Computing 8. 4 (2009), pp. 14-23.


https://kubeedge.io/
https://azure.microsoft.com/en-us/products/azure-stack/
https://azure.microsoft.com/en-us/products/iot-edge/
https://www.iiconsortium.org/pdf/OpenFog_Reference:Architecture_2_09_17.pdf

34 Weisong Shi et al. “Edge computing: Vision and
challenges”. In: IEEE Internet of Things Journal 3. 5
(2016), pp. 637-646.

35 Statista. Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2023, with forecasts
from 2022 to 2030.
https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/. Accessed: 2024-05-25.

36 Harald Sundmaeker et al. “Vision and challenges for
realising the Internet of Things”. In: Cluster of European
Research Projects on the Internet of Things, European
Commission 3. 3 (2010), pp. 34-36.

37 U.S. National Science Foundation. NSF 16-586:
NSF/Intel Partnership on Information-Centric
Networking in Wireless Edge Networks (ICN-WEN).
https://new.nsf.gov/funding/opportunities/nsfintel-

partnership-information-centric/505310/nsfl16-
586 /solicitation. Accessed: 2024-07-30.

38 UN Trade and Development. Digital economy report

2024. https://unctad.org/publication/digital-economy-
report-2024. Accessed: 2024-08-26.

39 Luis M Vaquero and Luis Rodero-Merino. “Finding your
way in the fog: Towards a comprehensive definition of
fog computing”. In: ACM SIGCOMM Computer
Communication Review 44. 5 (2014), pp. 27-32.

40 Zhi-Wei Xu. “Cloud-sea computing systems: Towards
thousand-fold improvement in performance per watt for
the coming zettabyte era”. In: Journal of Computer
Science and Technology 29. 2 (2014), pp. 177-181.


https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://new.nsf.gov/funding/opportunities/nsfintel-partnership-information-centric/505310/nsf16-586/solicitation
https://unctad.org/publication/digital-economy-report-2024

41 Ashkan Yousefpour et al. “All one needs to know about
fog computing and related edge computing paradigms: A
complete survey”. In: Journal of Systems Architecture 98
(2019), pp. 289-330.



2
Fundamentals of Edge Computing

In the context of the industrialization of emerging
information technologies, no new technology arises in a
vacuum. Each new development is a response to the
growing demands of new applications for high
performance, real-time processing, low energy
consumption, and low latency, which highlight the
limitations of existing information systems in computation,
storage, and transmission. In the era of the Internet of
Everything (IoE) and big data, the volume of data
generated by network edge devices has increased
dramatically. Traditional cloud-based big data-processing
technologies are gradually unable to meet the real-time
processing and low energy consumption demands of users.
It is within this context that edge computing has emerged,
addressing the shortcomings of current big data-processing
technologies and rapidly gaining significant attention from
both industry and academia over the past decade.

2.1 Distributed Computing

Distributed computing [6, 29] involves connecting
numerous computer nodes via the Internet to break down a
computational task, which a single computer cannot
handle, into multiple tasks that are distributed among
various computers in the network. The edge node executes
its assigned task, and the results are integrated into the
final output, which is then returned. This process
represents computation executed on a distributed system.
Distributed computing relies on multiple distributed
computing units interconnected by high-speed networks to



perform high-performance computations. It is
characterized by meeting user demand and resource
availability, enabling resource sharing among different
nodes. The main challenges it faces include heterogeneity,
scalability, faculty tolerance, and concurrency.

2.1.1 Distributed Computing Technologies

Distributed computing technologies primarily include
middleware technology [8], grid computing technology [5],
mobile agent technology [33], P2P technology [22], and
web service technology [7].

- Middleware Technology: Middleware is situated
between the operating system and distributed
application software, used to mask the heterogeneity of
operating systems and network protocols in a
distributed environment. IBM developed a customer
information control system (CICS) with middleware
functions in the 1960s. Early middleware software had
relatively simple functions, primarily providing
message communication and transaction processing. As
the demand for middleware applications diversified,
middleware technology evolved into several categories:
remote procedure call-based middleware, message-
oriented middleware, database middleware, and object-
oriented middleware. Among these, object-oriented
middleware has become the mainstream technology for
middleware platforms.

« Grid Computing Technology: Grid computing
integrated geographically dispersed hardware and
software resource through high-speed networks to
complete large-scale complex computation and data-
processing tasks. It generally refers to two widely used
subtypes in distributed computing: one is online
computation or storage provided as a service supported



by distributed computing resources; the other is a
virtual supercomputer formed by loosely connected
computer networks to execute large-scale computation
tasks. In terms of grid architecture, grid computing is
mainly divided into two types: one is the five-layer
hourglass structure represented by the Globus project,
and the other is the open-grid services architecture
(OGSA) that integrates with web services. The primary
difference between the two structures is that the
former is protocol-centric, while the latter is service-
centric.

Mobile Agent Technology: Mobile agents can
autonomously and automatically migrate within
heterogeneous networks and distributed computing
environments, and communicate with other agents. In
different network structures, mobile agents follow
certain principles to locate matching resource
information, perform tasks on behalf of clients, and
autonomously generate subagents as ended. In a
mobile agent system, each agent works independently
and can collaborate to complete tasks when necessary.

P2P Technology: By linking terminal devices in the
network and integrating idle resources, P2P technology
maximizes resource sharing and distributed computing.
In a P2P network, each node contributes its idle
resources and uses resource discovery mechanisms to
find available resources on other nodes, enabling
resource sharing. P2P technology can maximize the
utilization of network resources. However, due to its
characteristics of openness, self-organization,
autonomy, and distribution, network users can
dynamically and anonymously join or leave the system.
Consequently, P2P technology may face practical issues
such as copyright infringement, lack of management
mechanisms, network pollution, and malicious attacks.



« Web service Technology: Web service technology is
an extension of object/component technology on the
Internet and a type of distributed computing
technology deployed on the web. The primary goal of
web service technology is to construct a platform- and
language-independent general technical layer on top of
existing heterogeneous platforms, allowing applications
on different platforms to run smoothly. This technology
addresses the issue of limited interoperability, thereby
improving and expanding the functionality of
distributed computing.

2.1.2 Distributed System Platforms

The numerous challenges of big data environments have
spurred the use of distributed computing technology and
the growth of distributed systems. Today, Hadoop [32],
Spark [36], and Storm [4] are among the most widely used
platforms.

Hadoop, developed by the Apache Software Foundation, is
a distributed computing framework whose core
components include a distributed file system (Hadoop
distributed file system, HDFS [27]), a programming model
(MapReduce [13]), and a distributed structured data table
(HBase [17]). These correspond to the open-source
implementations of Google's core cloud computing
technologies: GFS [18], MapReduce, and Bigtable [11].
MapReduce abstracts the parallel computing process on
large-scale distributed systems into two functions: Map and
Reduce.

When a task is submitted to the Hadoop platform, it is
divided into multiple chunks. The JobTracker assigns the
currently idle TaskTracker to perform parallel Map
operations on these chunks. The RecordReader generates
< K, V> key-value pairs from the split data chunks for



parallel execution across different nodes. The intermediate
records produced by the Map tasks are further divided into
multiple chunks, with the JobTracker again assigning idle
TaskTrackers to perform parallel Reduce operations on
these chunks. The final results are written to output files
and are managed by HDFS.

However, because MapReduce stores intermediate results
on disk during distributed computing, especially during
iterative computations in data mining where previous
results need to be frequently accessed and used, the
system's performance is significantly affected.

To address the performance degradation caused by Hadoop
MapReduce frequent reading and writing to the file system,
the AMP lab at the University of California, Berkeley
developed Spark, a memory-based computing platform. The
key technology behind Spark is the creation of Resilient
Distributed Datasets (RDDs), which support data being
stored in memory, thereby enabling an in-memory
MapReduce architecture. By using RDDs, the MapReduce
process avoids writing intermediate results back to the
HDFS file system, significantly boosting computational
efficiency. This improvement is especially pronounced in
interactive computations, where Spark can be over 100
times faster than Hadoop. However, while Spark alleviates
the problem of frequent disk I/0, it is highly memory-
intensive.

Apache Storm, an open-source distributed real-time
computation system developed by Twitter (now known as
X), is designed to efficiently process massive streams of
data. Storm supports multiple programming languages and
provides a set of primitives for real-time computation,
greatly reducing the development cycle for large-scale real-
time processing.



Storm is widely used in various applications such as online
machine learning, real-time analytics, distributed remote
procedure calls (RPCs), continuous computation, and
Extract, Transform, Load (ETL). Real-time applications
requiring Storm are packaged into task topology and
submitted for execution. Once submitted, these task
topology will continue to run until explicitly terminated. A
task topology is composed of a series of spouts and bolts
arranged in a directed acyclic graph (DAG). Spouts are
responsible for reading data from external sources, while
bolts process the data received from spouts or other bolts.
By cascading spouts and bolts, the system completes the
desired computation tasks.

In summary, distributed computing has evolved from the
MapReduce architecture implemented on the Hadoop
platform to distributed systems like Storm that support
stream processing. This evolution aims to meet the
increasing real-time demands of big data processing.

2.2 The Basic Concept and Key
Characteristics of Edge Computing

Having established a foundational understanding of
distributed computing technologies and platforms, we can
now shift our focus to a more specialized domain within
this field: edge computing. This transition is essential as
edge computing builds upon the principles of distributed
computing but applies them in the context of optimizing
data processing closer to the data source. This section will
delve into the basic concepts and key characteristics of
edge computing, highlighting how it differs from and
extends the ideas we explored in distributed computing.



2.2.1 The Basic Concept

In the era of the IoE, connectivity extends beyond just
things in the IoT. It includes interactions between people
and things, featuring contextual awareness, enhanced
computing capabilities, and advanced sensing abilities. In
this interconnected model, people and information are
integrated into the Internet, creating a network with
billions or even trillions of connected nodes. IoE is based on
physical networks, combining network intelligence,
collaboration among all connected things, and visualization
functions.

Sensors, smartphones, wearable devices, and smart
appliances will all become part of the IoE, generating
massive amounts of data. However, the current cloud
computing model lacks the network bandwidth and
computing resources to efficiently handle this data [1, 20].
Figure 2.1 illustrates the traditional cloud computing
model. In this model, source data is sent from producers to
the cloud, and data consumers, such as smartphones,
personal computers, and even autonomous driving cars,
send usage requests to the cloud center. In the figure, solid
lines represent source data being sent by data producers to
the cloud center, dashed lines represent data consumers
sending usage requests to the cloud center, and dotted
lines show the cloud center sending results back to the
data consumers.
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Figure 2.1 Traditional cloud computing model.

Cloud computing uses extensive cloud resources to process
data, but in the IoE environment, the traditional cloud



computing model cannot effectively meet application
needs. The main reasons are: (1) sending massive amounts
of data from edge devices directly to the cloud leads to
network bandwidth overload and wasted computing
resources; (2) privacy protection issues in the traditional
cloud computing model pose significant challenges in the
IoE architecture; (3) most edge device nodes in the IoE
architecture have limited energy, while wireless
transmission modules like global system for mobile
communications (GSM) and Wi-Fi consume a lot of power.

To address these issues, leveraging the existing computing
capabilities of edge devices by migrating all or part of the
application service tasks from the cloud center to the edge
devices will help reduce energy consumption [30].

Currently, edge devices not only consume data, such as
when users watch online videos on smartphones, but also
produce data, like when people share photos and videos on
platforms like Facebook and X. This shift from being data
consumers to data producers requires edge devices to have
more powerful computing capabilities. For example, every
single minute, X users send 360 K tweets, Instagram users
send 694 K reels through direct messages per minute,
ChatGPT users send 6944 prompts, and viewers watch 43
years' worth of streaming content [15]. Additionally,
autonomous driving vehicles generate vast amounts of
sensor and video data every second, posing significant
challenges to bandwidth and computing resources for
processing and uploading the generated data. These large
volumes of images, videos, and sensor data require
significant bandwidth when uploaded to cloud computing
centers. To address this, preprocessing can be performed
on edge devices before uploading the source data to the
cloud, reducing the amount of data transmitted and
alleviating bandwidth load. Moreover, processing personal



health data and other sensitive information on edge devices
enhances privacy protection for users [16, 28].

Edge computing is a new computing model that executes
computations at the network's edge. It involves two types
of services: downstream cloud services and upstream IoE
services. In this model, “the edge” encompasses all
computing, storage, and network resources along the path
from the data source to the cloud computing center. As
illustrated in Figure 1.5, edge computing relies on a
bidirectional computational flow. Cloud centers collect data
not only from databases but also from edge devices like
sensors and smartphones. These devices function as both
data producers and consumers, making the data exchange
between the endpoint devices and the cloud center
bidirectional. Edge devices do more than request content
and services from the cloud; they also undertake various
computation tasks, including data storage, processing,
caching, device management, and privacy protection.
Enhancing the design of the hardware platforms and key
software technologies of edge devices is crucial to meet the
demands for reliability and data security in edge
computing.

From a functional standpoint, the edge computing model is
a distributed computing system characterized by elastic
management, collaborative execution, environmental
heterogeneity, and real-time processing capabilities. It
shares similarities with streaming computation models but
also includes unique features that are outlined below
(Figure 2.2):
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Figure 2.2 Edge computing model characteristics.

- Divisibility of applications/services: Applications or
services suitable for edge computing must be divisible.
This means a task can be decomposed into several
subtasks, which can be executed at the edge. The key
aspect here is not just the ability to split tasks but also
their migratability. Only tasks that can be migrated for
edge processing meet the necessary criteria.

- Distributability of data: This feature defines edge
computing and dictates the requirements for data sets
being processed. If the data lacks distributability, then
the model resembles a centralized cloud computing
framework. Distributability needs to address data from



various sources, typically generated by producers
creating large volumes of data.

- Distributability of resources: As the data in edge
computing models is inherently distributed, so too must
be the computing, storage, and communication
resources required to process this data. An edge
system can only adhere to the true model of edge
computing if it has the resources necessary for
processing and computing data at the edge.

2.2.2 The Key Characteristics

2.2.2.1 Compute Migration

In traditional cloud computing models, compute migration
strategies typically involve shifting compute-intensive tasks
to well-resourced data centers. However, in the context of
the IoE, the vast data volumes generated by numerous
edge devices cannot be efficiently transmitted to these
centers due to limited bandwidth. Even though cloud
centers have significantly lower computational latency
compared to edge devices, the substantial data
transmission overhead can hinder overall system
performance.

Thus, the compute migration strategy in edge computing
should focus on minimizing the amount of data that needs
to be transmitted across the network, rather than
relocating compute-intensive tasks to edge devices.

The edge computing strategy includes conducting partial or
complete preprocessing of data directly at the network
edge, where data is initially collected or generated by the
edge devices. This preprocessing aims to filter out
unnecessary data, reducing the bandwidth demand.
Moreover, it is crucial to dynamically allocate tasks based
on the current computational load of the edge devices to



avoid overloading any single device, which could degrade
system performance.

Key considerations in compute migration include
determining which tasks are suitable for migration,
deciding on a migration strategy, selecting specific tasks
for migration, and deciding whether to perform partial or
complete migrations. The decisions regarding compute
migration should be tailored to the application model,
considering whether the application can be migrated,
whether the required data volume for processing is
accurately known, and whether the tasks can be efficiently
synchronized postmigration.

Ultimately, compute migration technology should strive to
find the optimal balance between energy consumption,
computational latency at the edge, and the volume of data
transmitted, thus enhancing the performance and
efficiency of the edge computing model.

2.2.2.2 5G and 6G Communication Technologies

The fifth and sixth generations (5G and 6G) of mobile
telecommunications systems aim to deliver higher data
speeds, ultralow latency, more reliability, massive network
capacity, increased availability, and a more uniform user
experience to more users.

The 5G technology standard for cellular networks, which
cellular phone companies began developing worldwide in
2019, is the planned successor to the 4G networks, which
provide connectivity to most current cell phones. 5G
networks are predicted to have more than 1.7 billion
subscribers worldwide by 2025, according to the GSM
Association [31]. Compared to 4G, 5G significantly
increases the speed and responsiveness of wireless
networks, supports far more devices at high data rates, and



reduces latency, which is beneficial for new technologies
such as autonomous driving, virtual reality, and the IoT.

Although still in the early stages of development and
standardization, 6G networks are expected to succeed in
5G. Predictions suggest that 6G will enable even higher
speeds and lower latency, with the integration of advanced
technologies like artificial intelligence (AI) and
sophisticated satellite networks. It is anticipated to support
even more innovative applications, potentially including
advanced augmented reality, high-fidelity mobile
holograms, and greater integration of physical and digital
realities.

To meet the diverse application scenarios and business
demands, 5G and 6G networks will require a universal,
scalable, and easily extendable network architecture. This
will also involve integrating advanced technologies such as
software-defined networks (SDNs) and network functions
virtualization (NFV).

5G and 6G technologies are pivotal in the edge computing
model. Edge devices, tasked with processing either part or
all of the computational duties and filtering out redundant
and sensitive information, still need to upload intermediate
or final data to cloud centers. Thus, 5G and 6G
technologies are critical in reducing data transmission
delays for mobile edge devices, ensuring faster and more
efficient communication.

2.2.2.3 Advanced Storage Systems

As computer processors continue to advance rapidly, the
speed disparity between storage systems and processors
has become a significant bottleneck in overall system
performance. Edge computing requires robust real-time
capabilities for data storage and processing. Compared to
traditional embedded storage systems, edge-computing



storage solutions offer lower latency, increased capacity,
and enhanced reliability. These systems must handle data
characterized by high immediacy, diversity, and
interconnectivity, ensuring continuous storage and
preprocessing of edge data. Therefore, efficiently managing
and accessing continuous, real-time data is a critical focus
in the design of storage systems for edge computing.

Presently, nonvolatile memory (NVM) is extensively used in
embedded systems and large-scale data processing.
Storage devices based on NVM, such as NAND Flash,
PCRAM, and RRAM, provide significantly better read and
write performance than traditional mechanical hard drives
[25], thus effectively mitigating the I/O limitations of
existing storage systems. However, most traditional
storage system software stacks, designed primarily for
mechanical hard drives, do not fully leverage the maximum
capabilities of NVM.

As edge computing rapidly advances, NVM, characterized
by high density, low energy consumption, low latency, and
high read/write speeds, is increasingly being deployed in
edge devices. However, the integration of NVM within edge
systems faces several challenges:

- Rapid Technological Development vs. Software
Support: The fast-paced advancement of NVM
technologies is not mirrored by the development of
supporting software stacks, leading to a “software
bottleneck.” This mismatch hampers the ability of
storage systems to fully utilize the speed and efficiency
of modern NVM technologies.

- Diverse Application Requirements: Edge computing
demands a variety of applications for emerging storage
architectures. A crucial area of research involves
maximizing the performance, energy efficiency, and



capacity benefits of nonvolatile storage systems. Key
issues include optimizing nonvolatile memory for timely
edge data processing and simplifying storage system
management in complex edge environments.

- Reliability in Challenging Environments: Edge
environments require robust read/write capabilities
and high data reliability. Ensuring data reliability in
NVM under complex external conditions and resource
constraints is a pivotal concern. Factors affecting data
reliability include consistency issues in NVM, targeted
malicious wear attacks, and the lifespan and failure
rates of the storage media.

Addressing these challenges is essential for optimizing the
use of NVM in edge computing, necessitating focused
research and development in both hardware and software
domains.

2.2.2.4 Lightweight Libraries and Kernels

Unlike large servers, edge devices are constrained by their
hardware capacity and often cannot support the operation
of heavy software applications. For example, while
advanced RISC machines (ARM) processors continue to
increase in speed and decrease in power consumption, they
still lack the capability to handle complex data-processing
applications effectively. For instance, running Apache
Spark optimally requires at least an 8-core CPU and 8 GB
of memory. In contrast, the lightweight library Apache
Quarks [3] can only perform basic data-processing tasks
and is unsuitable for advanced analytics.

Moreover, the network edge is populated with a diverse
array of devices from various manufacturers, characterized
by significant heterogeneity and varying performance
levels, making application deployment on these devices a
complex challenge. Virtualization technology often serves



as a solution; however, traditional virtual machine (VM)-
based virtualization is too resource-intensive and slow for
edge environments, where swift responses are crucial.

Instead, edge competing models should adopt lightweight
virtualization technologies that align with the limited
resources of edge devices. Lightweight libraries and
kernels are particularly valuable in this context, as they
consume fewer resources and time, thereby optimizing
performances. Docker is an example of such a technology
that utilizes containerization. Docker containers are much
more resource-efficient compared to VMs because they
virtualize at the operating system level and share the host
system's kernel, rather than requiring a full operating
system for each instance. This allows Docker to provide
isolated environments for applications using minimal
resources, making it ideal for deploying applications on
resource-constrained edge devices. Docker not only
enhances the scalability and deployment speed but also
maintains consistent environments across development,
testing, and production, reducing compatibility issues.
Therefore, Docker and similar container-based technologies
are indispensable for optimizing performance and resource
utilization in edge computing.

2.2.2.5 The Edge Computing Programming Model

In the cloud computing model, users write applications and
deploy them to the cloud, where cloud service providers
maintain the servers. This model allows users to remain
largely unaware of the application's operation, benefiting
from the infrastructure's transparency. Typically, user
programs are written and compiled on the target platform
and run on cloud servers.

In contrast, the edge computing model involves migrating
some or all computing tasks from the cloud to edge nodes.



These nodes often exist on heterogeneous platforms, each
with different operating environments, presenting
significant deployment challenges for programmers. The
traditional programming models are inadequate for the
setting, highlighting the need for new programming models
tailored to edge computing.

To address this, we propose a concept known as a
“computation stream.” This concept represents the data
transmission path and the sequence of computations or
functions performed on the data. These functions, integral
to an application, occur along data paths that enable
computational applied at the source device, edge nodes,
and cloud environments to enable efficient distributed data
processing.

The evolution of the programming model necessitates new
runtime libraries, which are essential for implementing
language functions and providing runtime support. This
foundation is critical in edge computing, where
programming model changes demand novel runtime
libraries. These libraries should offer specific application
interfaces that simplify application development for
programmers, thus ensuring that applications can adapt to
the diverse and dynamic nature of edge environments.

Building on this foundation, we introduce the “Firework
Model” [37], a novel programming model designed
specifically for edge computing. This model includes two
components: the firework model manager and the firework
model nodes. The manager decomposes service requests
into several subtasks and distributes them among
participants, where each subtask is executed locally on the
participant's device. The nodes provide end-users with a
suite of predefined functional interfaces, facilitating easier
access and interaction. In this model, all nodes must
register their datasets and functionalities, which are



abstracted into a data view. These registered data views
are visible to all participants within the same model,
allowing any participant to combine these views for specific
data analyses tailored to particular scenarios. This
approach not only leverages the capability of new runtime
libraries but also aligns with the need for flexible and
efficient data processing at the edge, embodying the
principles of software-defined computations in practical,
deployable models.

2.3 Edge Computing vs. Cloud
Computing

With a clear grasp of edge computing's fundamental
concepts and its distinct characteristics, it is crucial to
understand how this technology fits into the broader
landscape of computing. Specifically, we will explore the
relationship between edge computing and cloud computing.
This relationship is pivotal for addressing big data
challenges and leveraging the strengths of both paradigms.
This section will analyze how edge computing complements
cloud computing, discuss their interaction with big data,
and evaluate the advantages of edge computing and the
challenges it faces.

2.3.1 The Concept of Cloud Computing

Cloud computing [10, 14, 19] is a service delivery model
that provides scalable distributed computing capabilities by
accessing computational, network, and storage resources
in data centers over a network. This model leverages
existing resources and uses virtualization technology [9,
26] to create a shared resource pool of many computers. It
offers powerful computational and management
capabilities and can dynamically partition and allocate



resources to meet diverse user needs, ensuring efficient
service delivery.

Cloud computing is an evolution of parallel computing,
distributed computing, and grid computing, or essentially,
a commercial realization of these computational science
concepts. Cloud computing is generally divided into three
service types: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). As
cloud computing continues to advance, different cloud
computing solutions are increasingly converging and
integrating with one another.

From the current research status, cloud computing has the
following characteristics:

« Large-Scale Cloud Server: Major IT companies like
Google and Microsoft have cloud computing platforms
with hundreds of thousands of servers. Even private
cloud projects for typical IT enterprises may involve
hundreds or thousands of servers. This vast scale
provides users with substantial computing power and
massive storage capacity.

- High Reliability: Cloud computing platforms are
designed with distributed server clusters, making
single-pint failures inevitable. To ensure high
reliability, cloud computing centers employ fault-
tolerance mechanisms such as replication strategies
and homogeneous interchange of computing nodes.

« Scalability: Cloud computing dynamically allocates or
releases resources based on specific user needs. When
demand increases, cloud computing can quickly provide
matching resources, offering high-speed and flexible
scalability. Similarly, resources can be released when
they are no longer needed, thanks to the inherent
scalability of cloud computing.



« Virtualization: Cloud computing integrates resources
dispersed across different geographical locations into a
logically unified shared resource pool through
virtualization technology. Users can request services
from the cloud computing center anytime and
anywhere via the Internet. Virtualization hides the
heterogeneity of underlying device resources, enabling
unified scheduling and deployment of all resources. The
cloud infrastructure is transparent, and users do not
need to worry about the specific location of these
resources. Therefore, virtualization is not only the
foundation of cloud computing but also a defining
characteristic.

2.3.2 The Big Data Era

In the era of the IoE, the large-scale application and
widespread development of new technologies such as
mobile devices and the Internet have brought data
informatization into the big data era. In May 2011,
McKinsey & Company first introduced the concept of “big
data” in their report “Big Data: The Next Frontier for
Innovation, Competition, and Productivity” [24]. Since
then, the potential value of big data has gained significant
attention from national strategic research departments
worldwide, elevating it to a matter a national importance.
The United States launched the “Big Data Research and
Development Initiative,” South Korea is actively advancing
its “Big Data Center Strategy,” and China has formatted
the “13th Five-Year Plan for Big Data Industry
Development.” Big data is poised to encompass all fields of
economic and social development and become a new
driving force for national economies.

In recent years, big data has become a major focus for
academics, industry professionals, and governments
worldwide. Leading journals such as Nature and Science



have explored the challenges and opportunities associated
with big data. As data resources grown in importance, a
nation's ability to harness and effectively use this data is
increasingly seen as a key factor in its overall strength and
influence. Big data-processing technologies cover essential
areas such as the collection, storage, cleaning, analysis,
mining, visualization, and privacy protection of massive and
diverse datasets. The integration of edge computing and
cloud computing technologies is a primary approach to
addressing significant challenges related to the storage,
transmission, and processing of big data. By leveraging the
strengths of both edge and cloud computing, it is possible
to balance big data-processing tasks efficiently and
optimize bandwidth and storage requirements.

Let's examine two examples to understand the relationship
between edge computing and big data processing. With the
development of the IoE, both video big data [2] and medical
big data [21] have high real-time demands for storage,
transmission, and computation.

Video big data is generated in high-definition formats,
which currently experience high latency during
transmission and processing, especially in real-time
scenarios such as object detection and localization. In
current video big data processing, video data is typically
transmitted to a central big data center for processing.
These centers, with their robust computing power, handle
the intelligent computation and storage of video data.
However, with the widespread adoption of high-definition
(1080P) and ultra-high-definition (4K) video, and the
increasing number of video surveillance devices, the
volume of video data has grown significantly. Transmitting
this large volume of video data to the data center for
analysis puts a heavy load on network bandwidth and
consumes considerable resources for data processing.
Additionally, the performance of video data processing is



often low due to the sheer volume of data, resulting in
reduced real-time processing capabilities. This delay can
directly impact the ability to make timely decisions in
public safety scenarios involving emergencies.

Therefore, applying edge computing technology to video
big data processing is critically important. By leveraging
edge computing, a portion or all of the video processing
tasks can be performed at the video surveillance terminal.
This approach reduces the amount of data that needs to be
transmitted and lowers processing costs, thereby
enhancing the efficiency and real-time capabilities of video
big data processing.

Medical big data forms the backbone of intelligent
healthcare. It involves sharing and collaborating on data
from various sources, including hospitals, pharmaceutical
manufacturers, pharmacies, and patients. Hospitals possess
vast amounts of patient records, drug demand information,
and disease distribution data. Pharmaceutical
manufacturers and pharmacies have drug information and
patient purchase data, while patients' medical data is also
highly valuable. Collectively, this is known as medical big
data.

A key challenge in utilizing the value of medical big data
for intelligent healthcare services is multi-edge
collaborative data processing. Given the sensitive nature of
this data, the critical issue is how to leverage edge
computing technology to handle sensitive and private data
at the edge while simultaneously sharing medical big data
to realize its full value.

In addition to the aforementioned video and medical big
data, there are also significant needs for edge computing in
sectors like smart grids and smart manufacturing. In the
context of the 10T, integrating cloud computing with edge
computing models offers an effective solution for tackling



challenges related to big data collaboration, processing
loads, transmission bandwidth, and data privacy protection.

2.3.3 Edge Computing vs. Cloud Computing

In the context of the IoE, application services require low
latency, high reliability, and data security. However, the
traditional cloud computing model falls short in meeting
these needs, particularly regarding real-time performance,
privacy protection, and energy consumption. Edge
computing models leverage the computational capabilities
of edge devices, performing some or all computations and
processing privacy-sensitive data at the edge. This
approach reduces the computational load, transmission
bandwidth, and energy consumption of cloud computing
centers. The following examples illustrate the benefits of
edge computing.

Yi et al. [35] tested data transmission latency and
bandwidth between user nodes and either edge nodes or
cloud nodes in the network, as shown in Figures 2.3 and
2.4. Amazon EC2 East and Amazon EC2 West represent two
cloud nodes located in different geographic regions of the
United States. Wired edge nodes, WiFi 5 GHz edge nodes,
and WiFi 2.4 GHz edge nodes represent three types of edge
node connections to the user's router. The tests were
conducted in Washington, D.C. (near the Amazon EC2 East
cloud).



Bl \Wired client

o B WiFi 2.4 GHz
Qr B WiFi 5 GHz |]
o

—_ L0 F

N

£

=

c Sl
o
g

Wired WiFi 5G WiFi 2.4 Ghz ec2 ec2
edge edge edge east west

Figure 2.3 Round trip time between client and edge/cloud.
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Figure 2.4 Bandwidth between client and edge/cloud.

The results show that when edge nodes are connected to
the user's network via wired connections, the round-trip
time is significantly better than that of cloud nodes. When
edge nodes are connected wirelessly, the round-trip time is
between the round-trip times of the two cloud nodes but is
less stable due to the lower speed and stability of wireless
channels compared to wired channels. Bandwidth
benchmarks indicate that edge nodes connected via wired
clients and WiFi 5 GHz have noticeably higher bandwidth
compared to the other three types. Edge nodes using WiFi
2.4 GHz have performance levels between the two cloud
nodes, primarily because WiFi 2.4 GHz bandwidth is more
limited, as shown by the performance of user nodes
connected via WiFi 2.4 GHz.



In summary, when edge nodes have high-quality
connections, their service quality surpasses that of cloud
nodes. Edge nodes offer lower latency and higher
bandwidth compared to cloud nodes, while cloud nodes can
serve as backup computing nodes to prevent edge node
saturation and handle longer request response times.

Xu et al. [34] compared the processing time of the edge
and the cloud on audio command understanding. The cloud
node is provided by Google Dialogflow service, the edge
node is set on a Raspberry Pi. When processing the Fluent
Speech Commands dataset [23], the cloud node
demonstrated long latency and unstable performance in
response, while the edge node solution can eliminate these
drawbacks (as Figure 2.5 shows).
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Figure 2.5 Round trip time for processing audio command
on edge and cloud.

We present the comparison between edge computing and
cloud computing in Table 2.1. It is evident that edge
computing is not intended to replace cloud computing but
rather to complement and extend it, providing a better
computing platform for mobile computing, the IoT, and
other applications. The edge computing model leverages



the powerful computational capabilities and vast storage of
cloud computing centers while addressing the need for
processing large volumes of data and private information
locally on edge devices. This helps meet requirements for
real-time performance, privacy protection, and reduced
energy consumption. The architecture of edge computing
follows a “device-edge-cloud” three-layer model, where
each layer can provide resources and services for
applications. This allows applications to choose the optimal
configuration for their needs.

Table 2.1 Edge computing vs. cloud computing.

Comparison Edge computing Cloud
content computing
Target IoT or mobile General
applications applications Internet

applications
Location of server Edge network Data center
nodes (gateways, Wi-Fi

access points, and
cellular base stations,

etc.)
Client-server Wireless local area Wide area
communication network (WLAN), network (WAN)
network 5G/6G, etc.
Number of Billions Millions
serviceable
devices (Users)
Types of service Services based on Services based
provided local information on global

information



2.3.4 Advantages and Challenges of Edge
Computing

The edge computing model transfers some or all
computational tasks from traditional cloud data centers to
locations closer to where data is generated. As noted
earlier in Section 1.1, the three Vs of big data—volume,
velocity, and variety—highlight the unique strengths of
edge computing. In this subsection, we'll contrast
centralized big data processing, typically exemplified by
cloud computing models, with edge-focused big data
processing, exemplified by edge computing models. We aim
to highlight the advantages of edge computing from a
macroscopic perspective, illustrating why it can be a more
effective choice in various scenarios.

In the era of centralized big data processing, the
predominant data types included text, audio/video, images,
and structured databases, with volumes typically at the
petabyte (PB) level. During this period, the cloud
computing model did not require high real-time processing
capabilities. However, in the era of edge-oriented big data
processing, under the backdrop of the IoE, the types of
data have become significantly more diverse and complex.
Notably, sensory data from interconnected devices have
surged, turning what were once mere consumer devices
into active data producers. Additionally, this era is
characterized by a crucial demand for real-time data
processing, with data volumes now exceeding zettabytes
(ZB).

In response to these changes, the need for real-time
processing and the increase in data volume has
necessitated migrating some computational tasks from
traditional cloud centers to network edge devices. This shift
aims to enhance data transmission performance, ensure



timely processing, and reduce the computational load on
cloud computing centers.

The unique data characteristics of the edge big data era
have driven the development of edge computing models.
However, the relationship between edge computing and
cloud computing is not exclusive but complementary. This
era represents a collaborative integration of both models,
significantly enhancing the capabilities of edge computing
in processing big data at the network's edge. This
integration provides an optimal software and hardware
support platform for the IoE. Nevertheless, the edge
computing model still faces multifaceted challenges in
managing data in the IoE era.

In February 2017, the Computing Community Consortium
(CCC) released the “NSF Workshop Report on Grand
Challenges in Edge Computing,” [12] which discusses the
main challenges of edge computing in areas such as
applications, architecture, capabilities and services, and
theoretical foundations of edge computing.

« Application Challenges: One of the main challenges
in applying edge computing includes real-time
processing and communication, security and privacy,
incentives and profitability, adaptive application
development, and the development and testing of
application tools. Edge computing holds significant
potential in applications such as video image analysis,
virtual and augmented reality, deep learning, and
intelligent connectivity and communication.

« Architectural Challenges: The architecture of edge
computing encompasses several critical areas. Cage-
level security ensures that massive data centers
maintain high security unaffected by operator control
through comprehensive hardware and software



measures. Embracing approximation addresses the
probabilistic nature of edge data processing due to
inherent uncertainties in the data itself. The trade-off
theory balances mobility, latency, capabilities, and
privacy to optimize system performance. Data
provenance tracks the origin, usage, and intended
users of large-scale data while preserving its integrity.
Quality of Service (QoS) at the network edge
guarantees end-to-end service quality of computing
resources, fostering provider collaboration through
mechanisms that define responsibility sharing, profit
distribution, and resource utilization. Lastly, testbeds
offer a cross-domain development environment
equipped with appropriate standards and secure
application programming interfaces (APIs) for edge
computing applications.

Capabilities and Service Challenges: This challenge
includes resource naming, identification and discovery,
standardized APIs, intelligent edge services, security
and trust, and the edge service ecosystem. Efficiently
utilizing edge computing resources largely depends on
having a robust programming model or interface that
makes it easier for developers to design and implement
applications for the edge computing model. This
support is crucial for the advancement of edge
computing. A runtime system must provide support for
the programming model at the higher level and
effectively manage local resources at the lower level. It
dynamically handles task partitioning and subtask
deployment, ensuring smooth execution of each subtask
at edge nodes and returning accurate results. In the
edge computing model, although data storage and
computation occur at the terminal, maintaining data
security and privacy is essential. Effective privacy
protection techniques must ensure that applications on



edge nodes cannot access data from other applications
and that external applications cannot access local data
without proper authorization. The commercial model
for edge computing will involve key players such as
telecommunication operators, equipment providers,
and edge device data producers, all integral to the edge
computing business ecosystem. The commercial value
of the edge computing industry encompasses edge
service providers, data providers, and infrastructure
builders. Data providers can fully leverage the value of
local data, encouraging more edge terminals to join the
edge computing framework.

« Edge Computing Theory: Edge Computing addresses
the technical limitations of existing cloud computing
technologies. However, refining the theoretical
foundation and framework of edge computing is
essential. This will provide better support for data
processing in the IoE and promote the application of
edge computing technologies across various critical
fields.

The challenges mentioned earlier, along with others that
have arisen throughout the development of edge
computing, will be thoroughly explored in Chapter 5. Both
industry and academia are actively working to overcome
these challenges, and their efforts will be discussed in
detail in Chapter 5.

2.4 Summary and Practice

2.4.1 Summary

This chapter begins with an introduction to distributed
computing technologies, followed by an in-depth analysis of
the fundamental concepts, models, and key technologies of



edge computing. The edge computing model is based on a
bidirectional computation flow, involving crucial
technologies such as computation offloading, 5G/6G
communication, new storage systems, lightweight libraries
and kernels, and edge computing programming models.
The relationship between edge computing and cloud
computing is also examined, highlighting that edge
computing is not intended to replace cloud computing but
to complement and extend it; the two are mutually
reinforcing. The integration of edge computing and cloud
computing offers a more effective solution to the challenges
of big data processing. Finally, the chapter discusses the
inherent advantages of edge computing and provides a
brief overview of the major challenges it faces in terms of
application, architecture, capabilities and services, and
edge computing theory.

2.4.2 Practice Questions
1. What are the key differences between distributed

computing and centralized computing systems?

2. Describe the main functionalities of Hadoop's HDFS
and how it supports distributed data storage.

3. Explain the basic concept of edge computing and its
key characteristics.

4. Discuss the complementary relationship between edge
computing and cloud computing.

5. Identify and explain two main challenges associated
with implementing edge computing systems and
propose potential solutions.



2.4.3 Course Projects

1. Conduct a comparative analysis of Hadoop MapReduce
and Apache Spark for big data processing. By setting
up Hadoop and Spark to perform a specific data-
processing task, the performance can be measured and
compared in terms of execution time, resource usage,
scalability, and ease of development and debugging.

2. Design and implement a hybrid edge-cloud computing
system for real-time data processing. The edge-based
component can be set up in a basic edge computing
environment, and the cloud-based component can use a
cloud service provider (e.g., AWS, Azure, and Google
Cloud).

3. Explore the impact of latency on application
performance. Set up a cloud-based application and
measure its performance, then replicate the application
in an edge computing environment and compare the
results. Utilize tools like https://prometheus.io/ for
monitoring and https://grafana.com/ for visualization to
measure and compare latency.
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3
Architecture and Components of Edge

Computingf

In Chapters 1 and 2, we explored why edge computing has
become a necessity in the modern digital landscape and
examined its foundational principles. Now, as we delve into
the architecture and components of edge computing, we
will uncover how this innovative approach is structurally
and functionally different from traditional centralized
models. This chapter will provide a comprehensive look at
the critical infrastructure, computing models, and
networking considerations that form the backbone of edge
computing.

3.1 Edge Infrastructure

To fully understand the capabilities and potential of edge
computing, it is essential to first examine its underlying
infrastructure. Unlike centralized models that rely on a few
powerful data centers, edge computing is built on a
distributed network of devices closer to the data source. In
this section, we will explore how edge infrastructure is
uniquely constructed to meet the demands of low-latency,
high-bandwidth applications, and the various grades/layers
that define its architecture.

3.1.1 Introduction to Edge Computing
Architecture

Edge computing is a network of decentralized computing
systems that process and analyze data near its origin,
rather than relying on centralized data centers. The key



components of edge infrastructure include edge devices,
which can be physical devices such as smartphones,
Internet of Things (IoT) devices, or edge servers; edge data
centers, which are smaller, localized data centers that
provide additional processing power; and communication
networks, which facilitate the transfer of data between
edge nodes and the central cloud.

Edge nodes are equipped with processing capabilities and
are responsible for executing tasks locally, reducing the
need to send data to the cloud. Edge data centers serve as
local hubs that can handle more intensive processing tasks
and provide a buffer for data before it is sent to the central
cloud or other edge nodes. The communication networks
are critical for ensuring that data can be transferred
efficiently and securely between different components of
the edge infrastructure.

3.1.1.1 Differentiation from Centralized Models

The primary distinction between edge infrastructure and
centralized models lies in the distribution of computational
resources and data processing. Centralized models
typically involve large data centers that are geographically
distant from the end-users and devices generating data.
These models can become bottlenecks due to the sheer
volume of data that needs to be transmitted over long
distances, leading to increased latency and potential
network congestion. In contrast, edge infrastructure
reduces these issues by processing data locally or
regionally, minimizing the amount of data that needs to be
sent to the cloud. This approach not only decreases latency
but also enhances the overall efficiency and responsiveness
of applications and services.

The construction goals of edge computing are as follows:



- Enhancing real-time capability: The scenario of
pervasive connectivity demands applications with an
exceptionally high requirement for real-time
performance. In the conventional cloud computing
paradigm, applications transmit data to remote cloud
centers and subsequently request processed results,
thereby augmenting the system's latency. Edge
computing is poised to augment the immediacy of data
processing. For instance, in the case of autonomous
vehicle applications, vehicles in rapid motion
necessitate reaction times on the order of milliseconds.
Any exacerbation of system latency due to network
issues could precipitate grave outcomes.

- Diminishing bandwidth demand: Edge devices
incessantly generate substantial volumes of data, and
the transmission of this data in its entirety to the cloud
imposes a significant strain on network bandwidth. A
case in point is the Boeing 787, which produces over 5
gigabytes of data per second [13]. However, the
bandwidth available between the aircraft and satellite
links is inadequate to facilitate real-time data
transmission.

- Mitigating energy consumption: Data centers are
prodigious consumers of energy. Research conducted
by Sverdlik [40] indicates that by the year 2020, the
cumulative energy consumption of all data centers in
the United States will have escalated by 4%, amounting
to 73 billion kilowatt-hours. As the proliferation of user
applications and the magnitude of data processed
continue to escalate, energy consumption is poised to
emerge as a constraint impeding the growth of cloud
computing centers. The distributed processing
characteristic of edge computing can attenuate the
energy footprint of data centers.



« Safeguarding data security and privacy: Data
within the interconnected milieu is intimately
connected to users' lives. For example, the installation
of indoor smart network cameras in many homes means
that video data transmitted to the cloud heightens the
risk of privacy breaches. With the advent of the
European Union's General Data Protection Regulation
(GDPR) [14], concerns regarding data security and
privacy have acquired increased significance for cloud
computing enterprises. Edge computing offers robust
mechanisms for the protection of data security and
privacy.

3.1.2 Different Grades/Layers of Edge

Edge computing is a continuum, which represents a
spectrum of computational paradigms extending from
centralized cloud infrastructures to the very periphery
where data is generated. As the architecture of edge
computing matures, it has evolved to encompass a
multitiered structure of edges, each with distinct
characteristics and capabilities. As shown in Figure 3.1, we
will analyze three primary categories of edge computing:
on-premises edge, network edge, and data center edge,
elucidating their unique attributes and potential
applications.



Data center edge

Network edge

On-premises edge

Figure 3.1 Three layers of edge.

3.1.2.1 On-premises Edge

On-premises edge computing refers to the processing of
data at the physical location of the user or data source.
This type of edge computing is typically applied in
scenarios that require real-time data processing and rapid
response. For example, in smart venues, on-premises edge
data centers can analyze audience traffic, security
monitoring, and environmental conditions in real time,
thereby providing a safer and more personalized
experience. In the field of intelligent connected vehicles, in-
vehicle data-processing units can process data from
sensors to achieve functions such as autonomous driving,



collision prevention, and vehicle status monitoring. In
public safety video processing, cameras typically have some
data preprocessing capabilities. These cameras are
characterized by low power consumption and limited
computational resources, but they generally can filter data
to reduce bandwidth usage.

The advantages of on-premises edge computing are
manifold. The reduced latency allows for faster, more
efficient data processing, which is essential for time-
sensitive applications. The high reliability of local
processing ensures that operations can continue even in
the event of network disruptions. Moreover, enhanced data
privacy is a significant benefit, as sensitive information is
processed and stored locally, minimizing the risk of data
breaches.

3.1.2.2 Network Edge

The network edge expands the reach of edge computing
beyond the immediate location of data generation by
leveraging the infrastructure of telecommunications
operators. This category of edge computing is integral to
the functioning of mobile networks, where base stations
equipped with edge computing capabilities can handle
data-processing tasks that were traditionally performed in
central data centers.

The network edge is particularly transformative for mobile
network optimization, enabling the delivery of high-quality
services such as video streaming and online gaming with
reduced latency. The deployment of edge computing at the
base stations allows for localized content caching, which
accelerates content delivery and enhances user experience.
In the area of 10T, the network edge is instrumental in
managing the vast array of connected devices. By
processing data at the edge of the network, the load on



central servers is reduced, and the responsiveness of IoT
applications is improved. This is particularly beneficial for
smart city initiatives, where numerous devices, from traffic
lights to environmental sensors, require real-time data
processing and analytics.

3.1.2.3 Data Center Edge

The data center edge represents a strategic extension of
traditional data center capabilities to the edge of the
network. This category of edge computing is designed to
bridge the gap between centralized data processing and
the localized needs of on-premises and network edges. Data
center edge computing is particularly adept at handling
large-scale data-processing tasks that require high
computational power and storage capacity. By deploying
resources closer to the users, data center edge computing
ensures that high-demand applications, such as online
gaming platforms and social media networks, can operate
with minimal latency and maximum performance.

One of the key applications of data center edge computing
is in the multiregion deployment strategies of cloud service
providers. By establishing edge computing nodes in various
geographical locations, these providers can offer consistent
service quality and response times to users across the
globe, regardless of their location. Moreover, the data
center edge is a critical component in the realm of big data
and machine learning. The proximity to end-users enables
real-time data analysis and inference, providing enterprises
with valuable insights that can inform strategic decision-
making and operational adjustments.

3.1.3 Capabilities of Edge Infrastructure

Edge infrastructure represents a pivotal technological
advancement that facilitates the decentralization of



computing resources. By bringing computation and data
storage closer to the source of data generation, edge
infrastructures enhance the efficiency, speed, and security
of data-processing operations. This section aims to provide
more analysis of the capabilities of edge infrastructure:
data process, cache and storage, communication, and
content delivery networks (CDNSs).

3.1.3.1 Data Process

At the heart of edge infrastructure lies the capability for
data processing, which encompasses a range of operations
critical to the preprocessing of data. The data process
includes collection, filtering, cleansing, transformation, and
aggregation. Collection is the initial step, where data from
various sources is gathered. Filtering then follows, allowing
the system to select relevant data points according to
predefined criteria. Cleansing ensures the removal of
corrupt or irrelevant data, thereby maintaining data
integrity. Transformation adjusts the format or structure of
the data to fit the requirements of downstream
applications. Finally, aggregation consolidates data into a
summarized form, making it more manageable and
insightful for analysis. Data process in edge infrastructure
enables real-time analytics and decision-making, which is
crucial for applications such as predictive maintenance in
industrial IoT, real-time traffic management in smart cities,
and instantaneous decision-making in financial trading
systems.

3.1.3.2 Cache and Storage

Cache and storage is the foundational capability that
supports the data lifecycle within edge infrastructures [55].
It involves the temporary or permanent storage of data,
which can be historical or recently generated. The
temporary storage, or caching, allows for quick access and



retrieval of frequently used data, thereby reducing latency
and improving response times. On the other hand, the
storage of historical data is vital for applications that
require trend analysis, long-term planning, or compliance
with data retention policies. The design of cache and
storage systems in edge infrastructures must consider
factors such as data durability, accessibility, and security.
The use of distributed file systems, object storage, and
databases that are optimized for edge environments
ensures that data can be stored, managed, and retrieved
efficiently.

3.1.3.3 Communication

Communication is the glue that binds the components of
edge infrastructures and cloud servers together. It
facilitates the forwarding of data to other nodes within the
edge network or to central servers for further processing or
analysis [31]. The efficiency of communication protocols
directly impacts the performance of edge applications,
particularly in scenarios that demand high throughput and
low latency, such as real-time video streaming or remote
healthcare services. Edge infrastructures will support
robust communication mechanisms that can handle diverse
data types and volumes. This includes the use of both wired
and wireless communication technologies, as well as the
implementation of communication protocols that are
resilient to network failures and capable of adapting to
varying network conditions.

3.1.3.4 CDNs

CDN represents a specialized application of edge
infrastructure capabilities, which is designed to optimize
the delivery of content to end-users by replicating it across
multiple edge nodes. This distribution reduces the latency
associated with content retrieval and ensures a high



availability of resources, even during peak traffic periods.
The role of CDN in edge infrastructures extends beyond
mere content caching. It involves sophisticated algorithms
for content routing, load balancing, and dynamic content
optimization. CDNs also play a critical role in enhancing
the security of content delivery through techniques such as
distributed denial-of-service (DDo0S) protection and secure
content delivery.

3.1.4 New Progress of Edge Computing
Architecture

In recent years, the architecture of edge computing has
seen further development, and this chapter outlines several
typical directions of evolution.

3.1.4.1 Edge Collaborative Consortium Architecture

The edge computing paradigm aspires to extend the
network service advantages of cloud data centers toward
the network edge, thereby bringing services closer to users
and computations closer to the source of data, offering
faster service response times. To achieve this, edge
infrastructure providers (EIPs) need to deploy computing
and storage resources at appropriate locations within the
access network and allow edge service providers (ESPs) to
leverage the edge layer resources provided by EIPs to
deliver critical services to users. Compared to the cloud
computing model, edge nodes face issues of limited
computing, storage, and bandwidth resources, and the
large-scale construction of edge nodes also entails high
construction and maintenance costs. Therefore, EIPs are
more inclined to establish a series of small-scale, private
edge computing environments to meet the specific needs of
users.



3.1.4.2 Computing-Networking Integration
Architecture

The computing-networking integration architecture has
evolved from networking, cloud networking to computing-
networking, where networking is the foundation, creating
lossless and deterministic network connections; cloud
networking is a further advancement in networking and
cloudification; and computing-networking achieves
trustworthy, efficient, on-demand, low-cost, and flexible
computing services. The development of computing-
networking integration can be summarized into three
important stages: intra-data center computing-networking
integration, cloud-networking integration, and cloud-edge-
end computing-networking integration. Currently, the
academic community in China has proposed the concept of
computation, which is a form of computing-networking
integration. Sky computing was proposed by UC Berkeley
(UCB) [39], which unites multiple data centers at the cloud
edge and end for collaborative optimization, also
representing a form of computing power integration.

3.1.4.3 Edge-Native Architecture

The introduction of the edge native concept has brought
more agile development architectures, simplified
operational configurations, and new value propositions to
edge layer applications. Edge native refers to the
architectural design of applications with the deployment on
the edge network as the target to fully leverage edge
capabilities. It is two sides of the same coin with cloud
native, reflecting the continuous shift of the information
and communication technology (ICT) industry's focus
toward the edge. Compared to cloud native, edge native
also considers characteristics such as rapid deployment,
continuous delivery, and the elasticity of shielding
underlying implementations, but in response to the unique



complex networking forms, limited resources, and the
diversity of computing and communication hardware at the
edge, edge native places greater emphasis on features such
as integrated computation and communication, lightweight,
support for heterogeneous devices, and autonomous offline
edge capabilities.

3.1.5 Open Questions

3.1.5.1 Computing Ability

In recent years, large language models and large video
models have made good progress in many fields, and
researchers have begun to study how to implement them in
edge scenarios. However, the self-attention mechanism
[43] at the core of large language/video models leads to
computation and memory usage growing quadratically with
the number of patches. This makes it difficult to deploy
large language/video models on the edge with limited
computational power and memory capacity. For example, a
typical Swin-L [28] model, contains approximately 197
million parameters and requires about 104 GFLOPs for a
single forward propagation when processing a 384x384
resolution image. In contrast, the NVIDIA Jetson Nano, a
common edge computing device, has a theoretical
computational power of only 472 GFLOPs, allowing it to
process up to about four image frames per second under
ideal conditions. What is more, due to practical factors
such as system overhead, memory bandwidth limitations,
and computational efficiency, the actual processing speed
is often much lower than the theoretical value. Therefore,
we should focus on how to make full use of the computing
resources of edge devices at different layers to meet the
computing power requirements of large Al models.



3.1.5.2 Programmalbility

Programming models facilitate the rapid onboarding of
developers in the creation of application products, thus
hastening the evolution of their respective domains. In the
area of cloud computing, user programs are authored and
compiled on the target platform, subsequently being
executed on cloud servers with the underlying
infrastructure remaining opaque to the user. Amazon's
Lambda service, for example, leverages such a
programming model, enabling users to operate code
without the prerequisite of preconfiguring or managing
servers, significantly enhancing user convenience.
Nonetheless, the paradigm of edge computing diverges
markedly from that of cloud computing, exhibiting
attributes of elastic management, collaborative execution,
and environmental heterogeneity. Edge computing
necessitates the segmentation of applications, the
dispersion of data, and the distribution of resources. As a
result, conventional programming models fall short in
meeting the demands of edge computing.

In the domain of edge computing, the majority of devices
constitute heterogeneous computing platforms, each with
its unique runtime environment and data sets.
Furthermore, the resources available on edge devices are
relatively limited, presenting considerable difficulties in the
deployment of user applications within edge computing
environments. Hence, there is an imperative to explore an
innovative programming model, analogous to the
MapReduce paradigm in the big data sphere, which can
offer a unified and succinct programming methodology
tailored for a multitude of applications, thereby driving the
technological progression of edge computing to new
heights.



3.2 Edge Computing Models

With the foundation of edge infrastructure laid out, we now
turn our attention to the various computing models that
drive edge computing. These models range from simple,
device-level processing to complex, collaborative systems
that involve multiple nodes working together.

3.2.1 Overview and Definitions

Edge computing is revolutionizing how data is processed
and managed by bringing computation and storage closer
to the data source. Two prominent paradigms in this
domain are mobile edge computing (MEC) and cloudlet
computing (Figure 3.2). Specially, Mobile Edge Computing
and multi-access edge computing [7] are essentially the
same concept, with the term “Multi-access Edge
Computing” being an evolution of “Mobile Edge
Computing.” MEC, standardized by the European
Telecommunications Standards Institute (ETSI) [19],
integrates cloud services at the edge of the network,
enabling low-latency and high-bandwidth applications. It
provides a platform for deploying applications and services
that require real-time processing, such as augmented
reality (AR), autonomous driving, and industrial
automation. On the other hand, cloudlet computing [30], a
concept introduced by Carnegie Mellon University, focuses
on providing localized, powerful computing resources near
mobile devices. Cloudlets serve as small-scale data centers
that offer cloud-like capabilities with minimal latency. They
are particularly suited for offloading computation-intensive
tasks from mobile devices, thereby enhancing performance
and extending battery life.
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Figure 3.2 “MEC” and “cloudlet computing.”

While MEC and cloudlet computing share the common goal
of bringing computation closer to the edge, they differ
significantly in architecture, deployment, and use cases.
MEC is tightly integrated with the mobile network
infrastructure, leveraging the existing cellular network to
provide seamless connectivity and service continuity. This
integration makes MEC ideal for telecom operators aiming
to offer value-added services and optimize network
performance [29]. In contrast, cloudlet computing
emphasizes flexibility and decentralization [2]. Cloudlets
can be deployed independently of the network
infrastructure, providing localized computing resources
that can be easily scaled and managed. This independence
allows for rapid deployment in diverse environments, from
urban areas to remote locations, making cloudlets highly
adaptable to varying application requirements.
Furthermore, MEC's close association with telecom
infrastructure ensures robust security and privacy controls,
which are crucial for applications in healthcare, finance,
and other sensitive sectors. Cloudlet Computing, while also
capable of maintaining high-security standards, often relies
on end-to-end encryption and local data processing to
protect user data.



As the edge computing landscape evolves, advanced
models are emerging to address the limitations of current
paradigms and harness the full potential of edge
technologies. The rise of 5G networks is poised to further
amplify the capabilities of edge computing models. The
ultralow latency and high bandwidth of 5G will enable more
sophisticated applications and seamless integration of MEC
and cloudlet computing. These advancements will pave the
way for innovative services and applications that were
previously unattainable due to latency and bandwidth
constraints. An emerging trend within this context is the
development of collaborative edge computing models.
These models emphasize the cooperation and coordination
among multiple edge nodes to optimize resource utilization,
enhance scalability, and improve fault tolerance. By
leveraging collaborative frameworks, edge nodes can
dynamically share workloads, balance traffic, and provide
redundancy, thus ensuring more reliable and efficient
service delivery. In conclusion, the future of edge
computing lies in the synergistic integration of various
models and technologies. MEC and cloudlet computing,
with their unique strengths, are foundational to this
ecosystem. As technology progresses, the development of
advanced models, including collaborative edge computing,
and the incorporation of Al and 5G will continue to drive
the evolution of edge computing, unlocking new
possibilities and transforming industries across the globe.

3.2.2 Collaborative Edge Computing Models

3.2.2.1 Edge-to-Edge Collaboration

Edge-to-edge collaboration involves direct interaction and
coordination between edge nodes to enhance performance,
reliability, and scalability [45]. This model is essential for
distributed applications requiring real-time data processing



and resource sharing across multiple edge locations. In
edge-to-edge collaboration, edge nodes communicate
directly with each other to share data, balance workloads,
and provide redundancy, as shown in Figure 3.3. This
collaboration is facilitated through decentralized protocols
and frameworks that enable efficient resource allocation
and management without relying on a central authority. By
leveraging local interconnections, edge nodes can reduce
latency and improve data processing speeds. Key
applications of edge-to-edge collaboration include smart
city infrastructure, autonomous vehicle networks, and
industrial IoT systems. In these scenarios, edge nodes work
together to process vast amounts of data generated by
sensors and devices, enabling real-time decision-making
and actions. For example, Li et al. [27] proposes the data
sharing scheme among intelligent connected vehicles to
ensure safe driving, which is the typical scenario of edge-
to-edge collaboration.
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3.2.2.2 Edge-to-Device Collaboration

Edge-to-device collaboration focuses on the interaction
between edge nodes and end-user devices, such as
smartphones, wearables, and IoT sensors, as depicted in
Figure 3.4. This collaboration model is pivotal in offloading
computation-intensive tasks from devices to nearby edge
nodes, thereby improving device performance and battery
life. Prominent use cases include AR applications, where
real-time processing is essential for rendering graphics and
ensuring smooth user experiences [12]. Similarly, in
healthcare, wearable devices can offload data-processing
tasks to edge nodes, enabling continuous health monitoring



and immediate response to critical health events [38].
Another example is in smart homes, where edge nodes
manage and process data from various connected devices
to optimize energy usage and enhance security [51].
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Figure 3.4 Edge-to-device collaboration.

3.2.2.3 Edge-to-Cloud Collaboration

Edge-to-cloud collaboration involves the integration of edge
computing resources with centralized cloud
infrastructures. This hybrid model leverages the strengths
of both edge and cloud computing, providing a balanced
approach to data processing and storage, as shown in
Figure 3.5. The primary benefits of edge-to-cloud



collaboration include enhanced scalability, as cloud
resources can be used to handle peak loads and extensive
data storage. Additionally, this model supports advanced
analytics and machine learning applications, where large
datasets can be processed in the cloud while critical, time-
sensitive computations are performed at the edge [50]. For
example, Wu et al. [48] demonstrated that the hybrid
human-Al scheme, enabled by edge-cloud collaboration,
offers a promising solution for enhancing video services. By
combining the strengths of edge and cloud computing with
human insights and Al capabilities, the proposed approach
can significantly improve video service quality and user
experience. However, integrating edge and cloud resources
presents challenges, including data consistency, latency,
and security. Ensuring seamless data synchronization
between edge nodes and cloud servers is crucial to
maintaining the integrity and accuracy of information.
Latency issues must be addressed to provide timely
responses for real-time applications. Furthermore, robust
security measures are required to protect data as it moves
between edge nodes and the cloud. For example, the study
in [20] presented an innovative hybrid DDPG-D3QN
approach for intelligent resource allocation in edge-cloud
collaborative networks. By combining the strengths of
DDPG and D3QN, the proposed method achieves superior
performance in optimizing resource utilization, reducing
latency, and minimizing costs, thereby enhancing the
overall efficiency of edge-cloud systems.
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Figure 3.5 Edge-to-cloud collaboration.

3.2.2.4 Cloud-Edge-Device Collaboration

Cloud-edge-device collaboration represents a holistic
approach where tasks are distributed across cloud servers,
edge nodes, and end devices based on their computational
requirements and latency sensitivity. This layered model
ensures optimal resource utilization and enhances the
overall system performance. In this collaborative
framework, cloud servers handle large-scale data
processing and long-term storage, edge nodes perform



intermediate processing and provide low-latency responses,
and devices focus on data collection and immediate user
interactions, as depicted in Figure 3.6. By strategically
distributing tasks, this model leverages the unique
strengths of each layer, providing a robust solution for
complex and dynamic applications. Peng et al. [34]
presented an end-edge-cloud collaborative computation
offloading framework designed for multiple mobile users in
a heterogeneous edge-server environment. By leveraging
the strengths of both edge and cloud servers and
addressing the heterogeneity of edge servers, the proposed
approach effectively reduces task completion time and
energy consumption, enhancing the overall performance of
mobile applications. Besides, Wang et al. [46] provided a
comprehensive overview of the current landscape of end-
edge-cloud collaborative computing for deep learning.

Collaborative edge computing models play a critical role in
the evolving landscape of edge computing. Edge-to-edge,
edge-to-device, edge-to-cloud, and cloud-edge-device
collaborations each offer unique advantages and address
specific challenges, making them essential components in
developing efficient, scalable, and reliable edge computing
systems. As technology continues to advance, these
collaborative models will enable innovative applications
and drive the next wave of digital transformation.
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Figure 3.6 Cloud-edge-device collaboration.

3.2.3 Choosing the Right Model

3.2.3.1 Factors to Consider

When selecting an edge computing model, several factors
must be taken into account to ensure that the chosen
solution aligns with business needs and technical
constraints.



« Business needs: Understanding the specific
requirements and goals of the business is crucial. Edge
computing models should be evaluated based on their
ability to support these objectives. For instance,
industries such as healthcare and finance, which
demand high levels of data privacy and security, may
benefit more from models that provide robust
encryption and localized data processing. In contrast,
applications in smart cities or retail, where real-time
data analytics and responsiveness are critical, might
prioritize models with low latency and high availability.

- Technical constraints: Technical limitations and
infrastructure capabilities also play a significant role in
determining the appropriate edge computing model.
Factors such as existing network architecture, available
bandwidth, latency requirements, and computational
power at the edge nodes should be considered. For
example, environments with limited network
connectivity might favor cloudlet computing due to its
ability to operate independently of the central cloud.

3.2.3.2 Implementation Challenges and Solutions

Deploying edge computing systems presents unique
challenges that need to be addressed to ensure successful
implementation.

« Addressing deployment challenges: One of the
primary challenges is managing the distributed nature
of edge nodes. Effective orchestration and management
tools are necessary to monitor, update, and maintain
these nodes. Solutions like Kubernetes, and its edge-
specific extension KubeEdge, provide robust
frameworks for orchestrating containerized
applications across edge and cloud environments. They
enable seamless deployment, scaling, and management



of applications, thereby simplifying the complexity of
edge computing deployments.

« Security and privacy: Ensuring data security and
privacy at the edge is another critical challenge.
Implementing comprehensive security measures,
including encryption, access control, and regular
security updates, is essential. Solutions should be
designed to protect data both in transit and at rest,
ensuring compliance with regulatory standards and
safeguarding against potential breaches.

3.2.3.3 Typical Edge Computing Systems and Models

Several edge computing systems have been developed to
address these challenges and provide effective models for
various use cases.

« KubeEdge: KubeEdge is an open-source platform that
extends Kubernetes capabilities to edge nodes [49]. It
enables the deployment and management of
containerized applications at the edge, providing a
scalable and flexible solution for edge computing.
KubeEdge supports a wide range of use cases, from
industrial IoT to smart cities, by facilitating real-time
data processing and efficient resource utilization [44].

« K3s: K3s is a lightweight Kubernetes distribution
designed specifically for resource-constrained
environments such as edge computing [35]. It aims to
deliver a quick, straightforward, and efficient way to
establish a highly available and fault-tolerant cluster
across a group of nodes focused on low-end application
areas. K3s demonstrates minimal disk usage, likely due
to its use of SQLite database. It also exhibits
performance benefits in most operations when
compared to other Kubernetes, and is suitable for



starting new nodes and integrating them into the
cluster [4].

« MicroK8s: MicroK8s is another lightweight, single-
node Kubernetes distribution designed for edge
computing. It is easy to install and manage, therefore
suitable for edge scenarios [5].

« Azure IoT Edge: Azure IoT Edge is another prominent
solution that allows for the deployment of cloud
workloads to edge devices [23]. It supports a variety of
programming languages and can run Al and analytics
workloads locally, reducing latency and bandwidth
usage. Azure IoT Edge is particularly useful in
scenarios where intermittent connectivity is a concern,
as it ensures continued operation even when the
connection to the cloud is lost.

« AWS IoT Greengrass: AWS IoT Greengrass brings
cloud capabilities to local devices, enabling them to
collect and analyze data closer to the source [25]. It
supports machine learning inference, device
messaging, and data sync with AWS cloud, making it
suitable for complex, data-intensive applications.
Greengrass's ability to operate offline and sync when
connectivity is restored makes it a robust solution for
remote and mobile environments.

3.2.3.4 New Progress of Edge Model

The field of edge computing is continuously evolving, with
significant advancements in edge federation and edge Al
models.

- Edge federation: Edge federation is an emerging
concept where multiple edge nodes, often managed by
different entities, collaborate to provide a unified
computing platform. This approach enhances resource



utilization, ensures better load balancing, and provides
redundancy, improving overall system resilience and
performance. Edge federation is particularly beneficial
in scenarios requiring high availability and robust fault
tolerance, such as smart grids, autonomous
transportation systems, and large-scale 10T
deployments. For example, Cao et al. [6] presents edge
federation, an integrated service provisioning model for
the edge computing paradigm. It aims to establish a
cost-efficient platform for edge infrastructure providers
(EIPs) and offer end users and edge service providers a
transparent resource management scheme by
seamlessly integrating individual EIPs as well as
clouds.

Edge AI models: Integrating Al at the edge, or edge
Al, is a rapidly advancing field that enables real-time
data analysis and decision-making at the source of data
generation [37]. Edge Al models leverage the
computational capabilities of edge devices to run
machine learning algorithms locally. This reduces the
need for constant data transmission to the cloud,
thereby lowering latency and bandwidth usage. Edge Al
is instrumental in applications such as predictive
maintenance, real-time anomaly detection, and
enhanced user experiences in AR/VR environments.
The combination of edge computing and Al opens up
new possibilities for smart, autonomous systems
capable of making informed decisions without relying
on central cloud resources. Federated learning is a key
component of edge Al that enables decentralized
machine learning [26]. In traditional Al models, data is
collected and sent to a central server for processing
and model training. Federated learning, however,
allows edge devices to collaboratively train models
without sharing raw data. Each device processes its



local data and sends only model updates to a central
server, which aggregates the updates to improve the
global model. This approach enhances privacy, reduces
bandwidth usage, and leverages the computational
power of edge devices [53].

3.2.4 Open Questions

As edge computing continues to evolve, several open
questions remain, particularly concerning the continuity
and unity of edge computing models.

3.2.4.1 Continuity

The edge computing model is envisioned as a continuum,
seamlessly integrating devices, edge nodes, and cloud
resources. However, current models are often dominated
by single layers, with specific tasks relegated either to the
cloud, edge, or device level. Achieving continuity in
computing is a significant challenge that requires:

- Dynamic orchestration: Developing advanced
orchestration frameworks that can dynamically allocate
tasks across the continuum based on real-time needs
and resource availability. These frameworks must be
capable of fluidly shifting workloads between the cloud,
edge, and devices without disrupting services.

« Interoperability standards: Establishing common
standards and protocols that ensure interoperability
between different layers of the continuum. This
includes standardized APIs and communication
protocols that enable seamless interaction and data
exchange across diverse systems and platforms.

« Adaptive algorithms: Implementing adaptive
algorithms that can intelligently distribute
computational tasks based on factors such as latency



requirements, computational load, and network
conditions. These algorithms must be able to learn and
evolve, optimizing task distribution to maintain
continuity in service delivery.

- Edge-native applications: Encouraging the
development of edge-native applications designed to
leverage the full spectrum of the edge continuum.
These applications should be capable of dynamically
adjusting their computational strategies to utilize
resources efficiently across different layers.

3.2.4.2 Unity

Edge computing currently relies heavily on specific
scenarios, tailored to particular applications or industries.
This scenario-based approach, while effective for targeted
use cases, raises questions about the potential for unity
across different scenarios. Achieving unity in edge
computing involves:

« Unified frameworks: Creating unified frameworks
that support a wide range of applications and use
cases. These frameworks should provide the necessary
tools and abstractions to accommodate diverse
requirements while maintaining a consistent underlying
architecture.

« Cross-domain collaboration: Promoting collaboration
across different industries and sectors to develop
shared solutions and best practices. This collaborative
approach can lead to the creation of versatile edge
computing platforms that are applicable to multiple
scenarios.

« Modular design: Adopting a modular design
philosophy for edge computing systems, where
components can be easily adapted or replaced to suit



different scenarios. This modularity ensures that core
functionalities remain consistent while allowing for
customization to meet specific needs.

- Interdisciplinary research: Encouraging
interdisciplinary research that combines insights from
various fields, such as computer science,
telecommunications, and industrial engineering. This
research can drive the development of innovative
solutions that bridge the gap between different edge
computing scenarios.

3.3 Networking in Edge Computing

Having discussed the infrastructure and computing models,
it's time to consider one of the most critical aspects of edge
computing—networking. The integration of networking
within edge computing is crucial to achieving seamless
data processing and communication across distributed
environments.

3.3.1 Introduction and Development Process of
Edge Computing-Network Integration

In edge computing multilayer architecture, how the
network communication between different layers is realized
is shown in Figure 3.7. The data centers in the cloud are
connected by the inter-data center network. This network
supports communication between multiple data centers,
enabling distributed processing and redundancy. To
provide cloud-like service to end users, edge devices must
be connected to the cloud center and end users through
network infrastructures, referred to as edge networking.
Edge computing devices communicate with each other and
with other network components through edge networking.
This layer facilitates the direct exchange of data between



edge devices, ensuring low-latency communication for
time-sensitive applications. The edge nodes are connected
to the cloud center through the core/metro networks. Core-
metro networks and the internet support communication
between cloud data centers, edge devices, and end users,
providing the necessary bandwidth and speed for large-
scale data transfer [54]. Edge networks connect to access
and mobile networks, such as 5G and Cloud/Edge-RAN, to
extend the reach of computing resources to end users. At
the same time, end devices can send data to and receive
data from the edge computing layer, enabling real-time
applications and services.
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Figure 3.7 Edge computing and networking.

Recently, the convergence of networking and edge
computing has been accelerated by the trend of network
cloudification, highlighting the pivotal role of networking in
cutting-edge computing technologies [11]. This
convergence promotes a comprehensive vision that



integrates resource and function management across both
network and edge systems, enabling unified provisioning of
services that span network and cloud/edge environments
[10]. Traditionally, networking functions as the backbone
for data transmission, resource sharing, and connectivity in
edge computing environments. It ensures efficient data
flow between devices, nodes, and cloud infrastructure,
facilitating the seamless operation of distributed systems.
The ongoing process of network cloudification is
transitioning from the use of specially designed network
appliances to data center-like systems built with commodity
servers and storage. In these systems, virtual network
functions can be deployed as software instances and
composed as service components for provisioning services.
Consequently, networks are evolving from infrastructures
solely dedicated to data communications into versatile
platforms that support both networking and computing
services. Moreover, network cloudification adopts the cloud
service model for network service delivery. This approach
allows data centers and edge servers, initially constructed
for edge computing, to host virtual network functions. As
depicted in Figure 3.8, the infrastructure layer of this
framework includes several administrative domains, each
managed by different infrastructure providers. These
administrative domains encompass various technical
domains, each specializing in a specific type of edge
infrastructure, such as networking, computing, or storage.
The virtualization layer abstracts these diverse computing
and networking resources, offering them as virtual
resources through the IaaS model. On the virtual function
layer, virtual network functions (VNFs) and virtual compute
functions (VCFs) are implemented using these
infrastructure services. These VNFs and VCFs are then
orchestrated at the service layer to form composite
services, which support various applications.
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Figure 3.8 The architectural framework for edge
computing-network integration.

3.3.1.1 The Development Process

Initially, efforts in networking concentrated on integrating
computing and network infrastructures within data centers,
where high-speed interconnections between servers and
storage systems optimized performance. This foundational
phase paved the way for further advancements in
networked computing environments. A significant driving
force behind network cloudification is the ETSI ISG
network function virtualization (NFV) [52]. In the NFV
architecture, both network and compute infrastructures are
abstracted by a common virtualization layer, enabling the
utilization of virtual resources to realize VNFs [8]. The
Management and Orchestration (MANO) component
handles the service and resource management as well as
orchestration. The true potential of edge computing is
harnessed through its interaction with networking,
especially the orchestration between computing and



networking capabilities. Recent advancements in MEC have
facilitated the integration of MEC and NFV, allowing MEC
applications and VNFs to share the same virtual
infrastructure. Moreover, the NFV MANO can be utilized
for MEC management and orchestration [15]. The 5G
network architecture, as developed by the 3GPP/5G-PPP
community, highlights network slicing as a crucial
mechanism for creating multitenant virtual networks on
shared network-compute infrastructures, thus supporting
various vertical applications [1]. This 5G architecture
employs NFV combined with the SDN paradigm and
leverages virtualization, softwarization, programmability,
and a service-based architecture to enable network slicing.
Consequently, network slicing presents a promising
approach for converging networking and cloud/edge
computing [9].

3.3.2 Edge Computing-Network Architectures

The architecture of edge computing networks is
fundamental to achieving efficient, scalable, and resilient
systems. This subsection explores various architectural
designs, examining their characteristics and implications
for edge computing. Understanding these architectures is
crucial for developing systems that can effectively leverage
the benefits of edge computing while addressing the
challenges of distributed networking.

3.3.2.1 Edge Network Design

Edge network design involves creating architectures that
optimize the deployment and connectivity of edge nodes.
Common designs include hierarchical models [17, 42],
where edge nodes are organized in tiers based on their
proximity to data sources and end-users, and mesh
networks, where nodes are interconnected in a
nonhierarchical manner, providing multiple pathways for



data transmission. Hierarchical designs often facilitate
easier management and scalability, while mesh networks
enhance redundancy and fault tolerance. The choice of
design impacts the performance, reliability, and complexity
of the network, influencing factors such as latency,
bandwidth utilization, and system robustness.

3.3.2.2 Distributed Networking

Distributed networking in edge computing spreads
processing and data storage across multiple nodes rather
than relying on a centralized infrastructure [21]. This
approach enhances scalability and resilience by
distributing workloads, reducing single points of failure,
and allowing for localized data processing. Distributed
networks are essential for applications requiring real-time
processing and low latency [36], such as IoT, smart cities,
and industrial automation. By decentralizing computing
tasks, these architectures can adapt to varying loads and
improve the overall efficiency of the system.

3.3.2.3 Top-Down, Service-Enabled Convergence
Architectures

Top-down, service-enabled convergence architectures
integrate various layers of the computing stack, from
hardware to applications, into a unified framework [33].
This approach allows for seamless service delivery and
resource management across the edge and cloud
environments. By converging networking, computing, and
storage resources, these architectures support the dynamic
allocation of resources based on service requirements.
They facilitate the deployment of complex services that can
span multiple edge nodes and cloud resources, ensuring
that computing power, storage, and networking are
efficiently utilized to meet application demands.



3.3.2.4 Computing Power-Aware Architectures

Computing power-aware architectures are designed to
optimize the use of computational resources based on the
specific needs of applications and the capabilities of edge
nodes. These architectures dynamically adjust the
distribution of workloads according to the available
computing power, energy efficiency, and processing
requirements [22, 24, 41, 56]. By being aware of the
computing power at each node, these architectures can
enhance performance, reduce energy consumption, and
ensure that tasks are allocated to the most suitable
resources. This approach is particularly important for
applications with varying computational demands, such as
Al-driven analytics, real-time video processing, and
complex simulations.

3.3.3 Current Progress and Future Trend

In recent years, substantial progress has been made in the
integration of edge computing with networking
technologies. Key developments include:

- Enhanced edge network infrastructure:
Deployment of 5G networks has dramatically improved
the connectivity and bandwidth available for edge
computing [16]. This infrastructure supports higher
data rates, reduced latency, and greater device density,
which are critical for applications such as autonomous
vehicles, AR, and IoT.

« Advanced distributed networking solutions:
Innovations in distributed networking, such as
software-defined networking (SDN) [3], named-data
networking (NDN) [32], and NFV, have enabled more
flexible and dynamic network configurations. These
technologies allow for better resource allocation and



management, ensuring that edge nodes can efficiently
handle diverse workloads.

- Edge Al integration: The integration of Al at the edge
has progressed significantly [47]. Edge Al models can
now perform complex data processing and decision-
making locally, reducing the need for constant data
transmission to the cloud. This advancement is crucial
for applications requiring real-time insights and
actions, such as predictive maintenance and intelligent
surveillance.

- Improved security mechanisms: With the increasing
deployment of edge devices, security has become a
paramount concern. Current progress includes the
development of robust security frameworks that protect
data integrity, confidentiality, and availability at the
edge [18]. Techniques such as secure boot, trusted
execution environments, and edge-based encryption are
being widely adopted.

Looking ahead, several trends are expected to drive the
future of edge computing and networking:

- Edge-to-edge and edge-to-multi-cloud integration:
The future will see deeper integration between edge
networks, enabling seamless edge-to-edge
communication and collaboration. Additionally, edge-to-
multi-cloud architectures will emerge, allowing edge
nodes to interact with multiple cloud providers,
optimizing resource use and ensuring redundancy.

« Al-driven network management: The application of
Al and machine learning in network management will
become more prevalent. Al-driven approaches will
enable predictive maintenance, automated
troubleshooting, and intelligent resource allocation,



enhancing the overall efficiency and reliability of edge
networks.

- Expansion of computing power-aware
architectures: Future architectures will increasingly
incorporate computing power-awareness, dynamically
adjusting to the available resources and the specific
needs of applications. This trend will lead to more
efficient and energy-conscious edge computing
systems.

« Development of unified edge standards: As edge
computing continues to grow, the development of
unified standards and protocols will become crucial.
Standardization efforts will facilitate interoperability
between different edge devices and platforms, fostering
a more cohesive and scalable edge ecosystem.

« Growth of edge ecosystems and partnerships:
Collaboration between technology providers,
enterprises, and industries will drive the growth of
edge ecosystems. Partnerships will enable the
development of specialized edge solutions tailored to
specific industry needs, accelerating the adoption of
edge computing across various sectors.

3.4 Summary and Practice

3.4.1 Summary

This chapter initially delineates the constituents of the edge
computing architectural framework, classifying them based
on the vantage point of their concrete deployment into
three distinct categories: on-premises edge, network edge,
and data center edge. By fostering synergy with cloud and
other peripheral devices, the edge computing architecture



demonstrates robust competencies in realms such as data
processing, cache and storage, communication, and CDNs.

Subsequently, this chapter articulates the definition of the
edge computing paradigm and elucidates four distinct
collaborative modalities intrinsic to edge computing. These
encompass edge-to-edge collaboration, which facilitates
interaction between disparate edge nodes; edge-to-device
collaboration, which integrates edge capabilities with end-
user devices; edge-to-cloud collaboration, which harnesses
the power of cloud computing to complement edge
processing; and cloud-edge-device collaboration, which
creates a cohesive and integrated ecosystem among clouds,
edges, and devices.

Finally, this chapter discusses the integration of edge
computing with the network. It outlines how network
integration is essential for seamless data processing and
communication across distributed environments. By
combining the two and developing them together, selecting
the appropriate model can enhance the overall efficiency
and effectiveness of the system.

3.4.2 Practice Questions

1. Discuss the different grades/layers of edge
infrastructure. How do these layers contribute to the
overall efficiency and scalability of an edge computing
system?

2. Compare and contrast mobile edge computing (MEC)
and multi-access edge computing (MEC).

3. Explain the role of gateways in an edge computing
architecture.

4. What are collaborative edge computing models, and in
what scenarios are they most beneficial?



5. What factors should be considered when choosing the
right edge computing model for a specific application?
Provide examples to support your explanation.

3.4.3 Course Projects

1. Set up a small edge computing network and
demonstrate communication between edge devices and
Servers.

2. Design a multilayer edge computing architecture
tailored to a specific application, such as smart cities,
autonomous vehicles, or smart homes, and explain how
each layer contributes to the overall architecture and
meets the application's requirements.

3. Build a demo system for cloud-edge-device
collaboration, with the functions of device-side data
collection, edge-side preprocessing data, and cloud
batch data processing.

4. Implement a system for managing and monitoring edge
devices using KubeEdge.

5. Evaluate a few popular Kubernetes performances and
discuss their advantages/disadvantages. An example

Github repo: https://github.com/hkoziolek/lightweight-
k8s-benchmarking.
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4
Toward Edge Intelligencef

In this chapter, we transition from the foundational concepts of edge computing to the
emerging field of edge intelligence (EI). As we explore this exciting frontier, we will
examine how artificial intelligence (Al) is integrated into edge computing systems to
benefit humans and society.

4.1 What Is Edge Intelligence?

With the burgeoning growth of the Internet of Everything, the amount of data generated
by edge increases dramatically, resulting in higher network bandwidth requirements.
Meanwhile, the emergence of novel applications calls for lower latency of the network.
Based on these two main requirements, edge computing arises, which refers to
processing the data at the edge of the network. Edge computing guarantees quality of
service when dealing with a massive amount of data for cloud computing [99].

At the same time, Al applications based on machine learning (especially deep learning
algorithms) are fueled by advances in models, processing power, and big data. Nowadays,
applications are built as a central attribute, and users are beginning to expect near-
human interaction with the appliances they use. For example, mobile phone applications,
such as those related to face recognition and speech translation, have a high requirement
to run online or offline.

As shown in Figure 4.1 pushed by edge computing techniques and pulled by Al
applications, EI has been pushed to the horizon. The development of edge computing
techniques, including powerful Internet of Things (IoT) data, edge devices, storage,
wireless communication, and security and privacy, make it possible to run Al algorithms
on the edge. Al applications, including connected health, connected vehicles, smart
manufacturing, smart home, and video analytics, require running on edge. In the EI
scenario, advanced Al models based on machine learning algorithms will be optimized to
run on the edge. The edge will be capable of dealing with video frames, natural speech
information, time series data, and unstructured data generated by cameras, microphones,
and other sensors without uploading data to the cloud and waiting for the response.
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4.1.1 Formal Definition

International Electrotechnical Commission (IEC) defines EI as the process by which data
are acquired, stored, and processed with machine learning algorithms on the network
edge. It believes that several industries of information technology and operational
technology are moving closer to the edge of the network so that aspects such as real-time
networks, security capabilities, and personalized/customized connectivity are

addressed [49]. In 2018, [90] discussed the challenges and the opportunities that EI
created by presenting a use-case showing that the careful design of the convolutional
neural networks (CNNSs) for object detection would lead to real-time performance on
embedded edge devices. [115] leveraged EI for activity recognition in smart homes from
multiple perspectives, including architecture, algorithm, and system.

In this book, we refer to the definition from [117]: EI is defined as the capability to
enable edges to execute artificial intelligence algorithms. The diversity of edge
hardware results in differences in AI models or algorithms they carry; that is, edges have
different EI capabilities. The capability here is defined as a four-element tuple <
Accuracy, Latency, Energy, Memory footprint > which is abbreviated as ALEM. Accuracy
is the internal attribute of Al algorithms. In practice, the definition of Accuracy depends
on specific applications; for example, it is measured by mean average precision in object
detection tasks and measured by the Bilingual Evaluation Understudy score metric in
machine translation tasks. To execute the Al tasks on the edge, some algorithms are
optimized by compressing the size of the model, quantizing the weight, and other
methods that will decrease accuracy. Better EI capability means that the edge is able to
employ the algorithms with greater Accuracy. Latency represents the inference time
when the trained model is run on the edge. To measure Latency, the average latency of
multiple inference tasks can be calculated. When running the same models, the Latency



measures the level of edge performance. Energy refers to the increased power
consumption of the hardware when executing the inference task. Memory footprint is the
memory usage when running the Al model. Energy and Memory footprint indicate the
computing resource requirements of the algorithms.

There are two types of collaboration for EI: cloud-edge and edge-edge collaboration. In
the cloud-edge scenario, the models are usually trained on the cloud and then
downloaded to the edge, which executes the inference task. Sometimes, edges will
retrain the model by transfer learning based on the data they generate. The retrained
models will be uploaded to the cloud and combined into a general and global model. In
addition, researchers have focused on distributed deep learning models over the cloud
and on the edge. For example, DDNN [103] is a distributed deep neural network
architecture across the cloud and edge. Edge-edge collaboration has two aspects. First,
multiple edges work collaboratively to accomplish a compute-intensive task. For example,
several edges will be distributed when training a large deep-learning network. The task
will be allocated according to the computing power. Second, multiple edges work
together to accomplish a task with different divisions based on different environments.
For example, in smart home environments, a smartphone predicts when a user is
approaching home, triggering the smart thermostat to set the suitable temperature for
the user. Individually, every task is particularly difficult, but coordination within the edge
makes it easy.

As shown in Figure 4.2, the data generated by the edge come from different sources,
such as cars, drones, smart homes, etc., and can be used in three different ways:

Edge data Edge inference
generation

T Optimized model

Figure 4.2 Dataflow of edge intelligence.

. First is uploading the data to the cloud and training based on the multisource data.
When the model training is completed, the cloud will do the inference based on the
edge data and send the result to the edge. This data flow is widely used in traditional
machine intelligence.

. Second is executing the inference on the edge directly. The data generated by the
edge will be the input of the edge model downloaded from the cloud. The edge will do



the inference based on the input and output of the results. This is the current EI data
flow.

. Third is training on the edge locally. The data will be used to retrain the model on the
edge by taking advantage of transfer learning. After retraining, the edge will build a
personalized model that has better performance for the data generated on the edge.
This will be the future data flow of EI.

EI involves a great deal of knowledge and technology, such as the design of Al
algorithms, software and systems, computing architecture, sensor networks, and so on.
Figure 4.3 shows the overview of EI. To support EI, many techniques have been
developed, called EI techniques, which include algorithms, software, and hardware.
Representative EI techniques will be introduced in the remainder of the chapter.
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Figure 4.3 Edge intelligence.

4.2 Hardware and Software Support

EI relies heavily on hardware and software advancements to function effectively and
bring Al capabilities to the edge of the network. In this section, we'll explore the specific
hardware components, such as the specialized processors and accelerators, that are
essential for enabling Al at the edge. We'll also discuss the software frameworks and
platforms that support the development and deployment of EI.

4.2.1 Hardware

Unlike traditional cloud centers, edge devices are often supplied with constrained
computation and power resources and must accommodate different end-user



requirements. In Table 4.1, we list typical hardware for deploying EI, each serving
different functions based on their strengths.

Table 4.1 Comparison of hardware types for edge AI applications: performance,
efficiency, and suitability.

Hardware Sub-type Examples Al Power Latency Key
type performance efficiency applications
ASIC TPU Google TPU, Excellent for 111 Very low Real-time Al
Google Edge Al inference, inference,
TPU optimized for image
TensorFlow classification,
object
detection
VPU Intel High for T Low Facial
Movidius vision-centric recognition,
Myriad X Al tasks visual SLAM,
low-power
object
detection
Neuromorphic IBM Efficient for 1111 Very low Cognitive
chip TrueNorth, brain-inspired computing,
Intel Loihi Al models robotics,
sensory
processing
FPGA Xilinx High, (M) Low to Custom Al
UltraScale+, customizable moderate models,
Intel Stratix for specific Al adaptive Al
workloads tasks
GPU Jetson High, 1 Medium Deep
Nano, AGX particularly learning,
Xavier in parallel autonomous
processing systems, Al
tasks research

T111: extremely high; 111 : very high; 11 : moderate; 1: high.

4.2.1.1 Application-Specific Integrated Circuit (ASIC)

An application-specific integrated circuit (ASIC) is an integrated circuit that is custom-
designed for a particular task or application. ShiDianNao [32] first proposed that the Al
processor should be deployed next to the camera sensors. The processor accesses the
image data directly from the sensor instead of dynamic random access memory (DRAM),
which reduces the power consumption of the sensor data loading and storing.
ShiDianNao is 60 times more energy efficient and 30 times faster than the previous state-
of-the-art AI hardware, so it will be suitable for EI applications related to computer
vision. Efficient inference engine (EIE) [40] is an efficient hardware design for
compressed deep neural networks (DNN) inference. Using multiple methods to improve
energy efficiency, such as exploiting the sparsity of DNN and sharing the weights of
DNN, it is deployed on mobile devices to process some embedded EI applications. In
industry, many leaders have published some dedicated hardware modules to accelerate
EI applications; for example, IBM TrueNorth [83] and Intel Loihi [26] are both
neuromorphic processors.



Google Cloud introduced Edge TPU (Figure 4.4) customized for ML inference on edge
devices [35]. Microsoft's Azure Sphere is a security-focused microcontroller that
incorporates an ASIC designed to provide hardware-based security features for IoT
devices, ensuring robust protection against various security threats [82]. AWS

Snowball [3] and Snowcone [4] are portable, rugged, and secure edge computing devices
that collect, process, and move data to AWS from disconnected environments.

Figure 4.4 TPU.

Another significant development is Intel's Movidius Myriad X. This vision processing unit
(VPU) (Figure 4.5) integrates 16 SHAVE (Streaming Hybrid Architecture Vector Engine)
cores and a dedicated neural compute engine for deep learning inference. The Myriad X
delivers over 1 TOPS of computational performance, enabling sophisticated Al
applications such as object detection, facial recognition, and autonomous navigation on
edge devices.

Figure 4.5 VPU.

NVIDIA has also made significant strides with its Jetson Nano, a small yet powerful Al
computer that delivers 472 GFLOPs of computational power. It supports multiple neural
networks in parallel for applications such as image classification, object detection, and



speech processing. The Jetson Nano (Figure 4.6) is designed to run on just 5-10 watts of
power, making it suitable for embedded IoT applications and autonomous machines
(Figure 4.9).

Figure 4.6 Jetson Nano.

Figure 4.7 TrueNorth chip.

IBM's TrueNorth neuromorphic chip represents a different approach to ASIC design
(Figure 4.7). Inspired by the human brain, TrueNorth is designed to process information
in a highly parallel and efficient manner, mimicking the brain's neural network
architecture. This chip excels in applications requiring real-time pattern recognition and
sensory processing, such as robotics and cognitive computing.

Apple also proposed the Apple Neural Engine (ANE), which is designed to accelerate
machine learning tasks within Apple's suite of mobile devices. Introduced as part of the



Al1 Bionic chip and continually evolving in subsequent models, the ANE is a specialized
ASIC designed to accelerate neural network operations. The ANE enhances performance,
reduces latency, and maintains user privacy by enabling local processing of tasks such as
voice recognition, facial recognition, and augmented reality.

4.2.1.2 Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units
(GPUs)

Several studies have deployed general-purpose field programmable gate arrays (FPGAs,
as shown in Figure 4.8) or graphics processing units (GPUs) for EI application scenarios,
such as speech recognition, image classification, and natural language processing (NLP).
Both Intel and Xilinx are pioneer companies in the field of FPGA research. For example,
Xilinx has introduced a series of specialized adaptable accelerator solutions catering to
different Al tasks. The Alveo accelerator cards are designed for high-performance data
center applications, providing powerful acceleration for workloads such as machine
learning inference (especially deep learning) and video processing. On the other hand,
Xilinx also launched multiprocessor system-on-chip (MPSoC) devices, which are ideal for
edge computing applications. These MPSoC devices combine arm-based processors and
programmable logic gates, making them highly suitable for Al inference tasks at the edge
where power efficiency and real-time processing are crucial. The series of MPSoC FPGAs
are highly used for deep learning models due to its robust software ecosystem that
includes support for high-level programming languages. Similarly, Intel has developed
the Agilex and Stratix 10 FPGA families, which are aimed at high-performance
acceleration tasks and are supported by a Quad-core ARM Cortex-A53 processor. In the
current scenario, Xilinx has a mature and widely used development environment,
particularly with its Vivado Design suite, which is considered user-friendly. ESE [41] used
FPGAs to accelerate the LSTM model on mobile devices, which adopted the load-balance-
aware pruning method to ensure high hardware utilization and the partitioned
compressed LSTM model on multiple processing elements (PEs) to process the LSTM
data flow in parallel. The implementation of ESE on Xilinx FPGA achieved higher energy
efficiency compared with the CPU and GPU. Biookaghazadeh et al. used a specific EI
workload to evaluate the performance of FPGA and GPU on edge devices. They compared
some metrics, such as data throughput and energy efficiency, between the FPGA and
GPU. The evaluation results showed that the FPGA is more suitable for EI application
scenarios [13].
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Figure 4.8 FPGA.

In industry, NVIDIA published the Jetson AGX Xavier module (Figure 4.9) [87], which is
equipped with a 512-core Volta GPU and an 8-core ARM 64-bit CPU. It supports CUDA
and TensorRT libraries to accelerate Al applications in several scenarios, such as robot
systems and autonomous vehicles. In 2022, NVIDIA also introduced the Jetson Orin
box [85], which provides even higher performance and efficiency and supports more
advanced Al models, making it suitable for complex edge AI applications.




Figure 4.9 Nvidia AGX Xavier.

4.2.2 Software

While hardware forms the foundation of edge intelligence by providing the necessary
computational power and specialized processing capabilities, the software enables
advanced functionality, transforming raw processing power into intelligent, efficient, and
scalable edge solutions.

4.2.2.1 Packages

In order to execute Al applications efficiently, many deep learning packages are
specifically designed to meet the computing paradigm of Al algorithms, such as
TensorFlow, Caffe, MXNet, and PyTorch. However, these packages are focused on the
cloud and are not suitable for the edge. In the cloud, packages use a large-scale dataset
to train deep-learning models. One of the main tasks of packages is to learn the number
of weights in each model layer. They are deployed on the high-performance platforms,
such as GPU, CPU, FPGA, and ASIC (TPU [54]) clusters. On the edges, due to limited
resources, packages do not train models in most cases. They carry on inference tasks by
leveraging the models which have been trained in the cloud. The input is small-scale real-
time data and the packages are installed on heterogeneous edges, such as edge servers,
mobile phones, Raspberry Pi, and laptops.

To support processing data and executing Al algorithms on the edges, some top-leading
tech giants have released several edge-based deep learning packages. Compared with
cloud versions, these frameworks require significantly fewer resources but behave almost
the same in terms of inference. TensorFlow Lite [104] is TensorFlow's lightweight
solution designed for mobile and edge devices. It leverages many optimization
techniques, including optimizing the kernels for mobile apps, prefused activations, and
quantized kernels to reduce the latency. ONNX (Open Neural Network Exchange) [89]
runtime is another open-source performance-focused inference engine for machine



learning models. It is a part and parcel of the ONNX ecosystem launched by Facebook
and Microsoft. It supports models in the ONNX format, which is a cross-platform
standard designed to make models portable across different hardware and software.
ONNX runtime is optimized for a variety of platforms, including Jetson Nano, Xilinx
FPGAs, NPU, and Nvidia AGX. Apple published CoreML [11], a deep learning package
optimized for on-device performance to minimize memory footprint and power
consumption. Users are allowed to integrate the trained machine learning model into
Apple products, such as Siri, Camera, and QuickType. Facebook developed QNNPACK
(Quantized Neural Networks PACKage) [77], which is a mobile-optimized library for high-
performance neural network inference. It provides an implementation of common neural
network operators on quantized 8-bit tensors. Moreover, Google developed

XNNPACK [34] for highly efficient floating-point neural network inference on ARM, x86,
webAssembly, and RISC-V platforms. XNNPACK serves as a low-level performance
primitive aimed at accelerating high-level machine learning frameworks, including
TensorFlow Lite, TensorFlow.js, PyTorch, ONNX Runtime, and MediaPipe, rather than
being designed for direct usage by deep learning researchers. Microsoft introduced
Azure IoT Edge [81], which enables deployment and management of cloud-native
workloads (e.g., Al, Azure services, or user's own business logic) on IoT devices. Intel's
OpenVINO toolkit is an open-source toolkit that accelerates Al inference with lower
latency and higher throughput while maintaining accuracy [48]. It converts and optimizes
models trained using popular frameworks such as TensorFlow and PyTorch, and then
deploys the optimized models across a mix of Intel® hardware and environments, on-
premise and on-device, in the browser, or in the cloud.

In addition to the edge-optimized packages such as TensorFlow Lite and Core ML, Vitis
Al [9] by Xilinx stands out as a crucial development by developing Al applications on
Xilinx's FPGA and SOC. Vitis Al leverages the hardware acceleration capabilities of Xilinx
devices, offering model optimization, compiler, runtime, and quantization. Vitis Al
includes a comprehensive suite of libraries and APIs that support popular machine
learning frameworks like TensorFlow and PyTorch, authorizing developers to seamlessly
import and optimize their pretrained models (AI model zoo) for execution on Xilinx
platforms. Furthermore, Vitis Al provides an Al compiler, including high-level network
description into low-level hardware instructions, and an Al profiler like Vaitrace for
evaluating the efficiency of the inference. Additionally, FINN (Fast, Intuitive Neural
Network compiler) [106] is part of the broader ecosystem of tools for accelerating
machine learning applications on Xilinx hardware. FINN was developed by the AI Lab of
AMD Research & Advanced Development. FINN delivers an end-to-end pipeline for taking
a neural network from a quantized neural network and transforming it into an FPGA-
compatible format, optimizing it for performance. It is not a generic DNN acceleration
solution but relies on codesign and design space for quantization and parallelization
tuning to optimize a solution. This compiler is still under continuous development but can
be an excellent asset for FPGA research for Al solutions.

Meanwhile, cloud-based packages are also starting to support edge devices, such as
MXNet [21] and TensorRT [86]. MXNet is a flexible and efficient library for deep
learning. It is designed to support multiple platforms (either cloud platforms or edge
ones) and execute training and inference tasks. TensorRT is a platform for high-
performance deep learning inference, not training, and will be deployed on the cloud and
edge platforms. In addition to the frameworks mentioned earlier, Amazon SageMaker
Neo [6] is another tool for deploying machine learning models on edge devices. It
optimizes the trained machine learning models for inferences according to the targeted
device and then runs those on edge devices faster with no loss in accuracy. Amazon
SageMaker Neo aims to minimize the time researchers spend manually tuning models to
perform efficiently on hardware-constrained devices. Amazon SageMaker Neo utilizes



Apache TVM, partner-provided compilers, and acceleration libraries to deliver the best
available performance for a given model and hardware target. Several techniques,
including weight and activation precision calibration, layer and tensor fusion, kernel
autotuning, and multistream execution are used to accelerate the inference process.
Zhang et al. [116] made a comprehensive performance comparison of several state-of-the-
art deep learning frameworks on the edges and evaluated the latency, memory footprint,
and energy of these frameworks with two popular deep learning models on different edge
devices. They found that no framework could achieve the best performance in all
dimensions, which indicated that there was a large space to improve the performance of
Al frameworks on the edge. It is very important and urgent to develop a lightweight,
efficient, and highly scalable framework to support Al applications on the edges.

4.2.2.2 Running Environment

To effectively support EI tasks, EI running environments must be customized and
lightweight, ensuring deployment across various heterogeneous hardware platforms.
They should manage diverse computational resources efficiently, handling typical
workloads such as model inference and collaborative model training. The running
environment needs to support deep learning packages, ensuring compatibility with the
common frameworks and tools used in EI. In addition, it must handle real-time data
processing from various sources, such as environmental sensors, cameras, and LiDAR,
which often possess spatial and temporal attributes. Ensuring fault tolerance and optimal
resource utilization is crucial, as edge computing environments require high reliability
due to their proximity to data sources and limited computational power.

Taking the aforementioned requirements into account, some studies can be recognized as
potential systems to support EI:

TinyOS: TinyOS [60] is an application-based operating system for sensor networks.
The biggest challenge TinyOS has solved is to handle concurrency-intensive
operations with small physical size and low power consumption [43]. TinyOS takes an
event-driven design which is composed of a tiny scheduler and a components graph.
The event-driven design makes TinyOS achieve great success in sensor networks.
However, enabling effective computation migration is still a big challenge for TinyOS.

ROS and ROS2: Robot Operating System (ROS) [92] is recognized as a typical
representative of the next generation of mobile operating systems designed to cope
with the IoT. Originally designed to manage communication in heterogeneous robotic
systems, ROS has evolved to be a versatile tool for edge computing applications. In
ROS, the process that performs computations is called a node. For each service, the
program or features are divided into several small pieces and distributed across
multiple nodes, with the ROS topic defined to share messages between these nodes.
This communication-based design gives ROS high reusability for robotics software
development. ROS 2.0 [76] enhances its capabilities by offering Data Distribution
Service (DDS) [27] for improved communication efficiency and addressing the issue
of ROS's dependency on the master node. The active community and the formation of
a robust ecosystem put ROS in a good position to be widely deployed for edge
devices, including industrial robots [8, 51, 95], autonomous vehicles (e.g., Autoware)
and unmanned aerial vehicles (e.g., PX4 Autopilot [91]). However, neither ROS nor
ROS2 is fundamentally designed for resource allocation and computation migration,
presenting challenges in the implementation of EI services directly with them.

AWS IoT Greengrass: AWS IoT Greengrass [5] is an IoT open-source edge runtime
and cloud service developed by Amazon that helps users perform data management
and deploy Al applications on millions of devices in homes, factories, vehicles, and
businesses.



OpenVDAP: OpenVDAP [114] is an edge-based data analysis platform for Connected
and Autonomous Vehicles (CAVs). OpenVDAP is a full-stack platform that contains
Driving Data Integrator (DDI), Vehicle Computing Units (VCU), edge-based vehicle
operating system (EdgeOSv), and libraries for vehicular data analysis (libvdap).
Inside OpenVDAP, VCU supports EI by allocating hardware resources according to an
application and libvdap supports EI by providing multiversions of models to
accelerate model inference.

EdgeOS_H: EdgeOS_H [17] is an edge operating system designed for smart home
applications. It is deployed at the edge of the home network and connects smart
home devices and applications through a three-layer functional abstraction. This
system addresses the diverse computing requirements of various edge hardware
devices in smart homes. It emphasizes flexibility, scalability, isolation, and reliability
in service management. The Phi-Stack architecture, which it incorporates, further
enhances these capabilities. Additionally, the lightweight REST engine and Lua
interpreter in PhiOS enable the execution of computing tasks on edge devices within
the home network.

Amazon sageMaker Edge: Amazon sageMaker Edge [7] is a broader Amazon
sageMaker suite that deploys, manages, and runs machine learning models on edge
devices. SageMaker edge compiler compiles the trained model into an executable
format that applies performance optimizations and can make the model run up to 25
X faster on the targeted hardware. The edge manager also provides a dashboard to
understand the performance of models on each device along with overall fleet health.
SageMaker edge supports most of the machine learning frameworks such as MXNet,
ONNX, and Keras.

PYNQ: PYNQ (python productivity for Zynq) [112] is an open-source python-based
runtime environment designed for Xilinx Zyng SoCs, which can integrate both FPGA
and ARM processors. Pyng employs the FPGA for hardware-accelerated tasks without
writing traditional hardware description languages like Verilog or VHDL. It also
provides a Jupyter Notebook interface for interacting with FPGA hardware, enabling
high-level Python code. It includes libraries and APIs that abstract the complexity of
FPGA programming, enabling real-time data processing, machine learning inference,
and other computational tasks instantly on edge devices. Moreover, PYNQ enables
rapid prototyping to deploy the model on FPGA, which means it helps researchers
who do not have deep expertise in hardware design languages. Overall, PYNQ makes
FPGA technology more accessible, enabling to harness the power of programmable
hardware.

4.2.3 Container

The variety of packages and runtime environments, on the one hand, enables EI to handle
diverse tasks, but on the other hand, it complicates the deployment of EI, considering it is
typically a distributed system involving heterogeneous devices. Containers, which
facilitate the deployment and management of EI, are therefore essential.

A container is a software component that includes all the necessary elements for running
specific applications in any environment. It packages the runtime code, the execution
environment, required packages and libraries, and any other dependencies of the
applications into executable software units, making them portable across a variety of
computing environments.

Figure 4.10 illustrates how containers help deploy and execute different applications.
Since containers share the OS kernel, they do not require a full OS for each application,
which keeps the size of container files small and makes container execution resource-
efficient. Furthermore, because all dependencies are bundled with the application in the



container, migrating applications (from the development environment to the production
environment or between different computing platforms) requires minimal changes.
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Figure 4.10 Container.

A container engine, also known as a container runtime, is a software program that
creates and manages containers based on container images. It acts as an intermediary
between the containers and the operating system, providing and managing resources for
the application. Container engines can also process user requests, such as command line
options and image pulls. Some widely used container engines include: Docker [80],
RedHat RKT [94], Canonical LXD [16], and Google Kubernetes Engine [36].

4.3 Technologies Enabling Edge Intelligence

Now, we turn our focus to the cutting-edge technologies that enable these systems to
operate efficiently in resource-constrained environments.

4.3.1 Compression Techniques

To enable deep learning models in edge environments, where computational resources
are limited, a range of compression techniques are employed. Compression technique
accelerates the speed of model inference, and are roughly categorized into four groups:
parameter sharing and pruning methods, quantization, low-rank approximation methods,
and knowledge distillation methods [23, 38].

4.3.1.1 Parameter Sharing and Pruning

Parameter sharing and pruning control the capacity and storage cost by reducing the
number of parameters that are not sensitive to performance. In the parameter-sharing
mechanism, each neuron in the neural network does not independently have a weight



matrix. Instead, it shares the same weight matrix. This greatly reduces the number of
parameters, decreases the complexity, and improves the model's generalization ability to
input data. In CNNs, parameter sharing is a fundamental aspect of convolutional layers.
Each convolutional layer processes input data through convolution operations, utilizing a
shared parameter matrix to produce the output. Unlike traditional neural networks where
each neuron has its own set of parameters, CNNs share these parameters across the
entire layer. This parameter-sharing mechanism not only reduces the complexity of the
network but also enhances its generalization capabilities. Furthermore, parameter
sharing imparts translational invariance to the CNN, ensuring that the network's output
remains consistent even when the input undergoes slight shifts or variations. This
attribute is particularly advantageous in tasks such as image recognition, where CNNs
have demonstrated exceptional performance. In recent years, parameter sharing has no
longer been referred to solely as a compression technique; researchers and developers
have started considering it a fundamental architecture within neural networks. Following
the strategy of parameter sharing, the pruning technique is one of the most popular
compression technologies. While Han et al. [38] introduced the method of pruning a
model without losing the model accuracy. He found physiological evidence to support
their pruning method. In mammalian physiology, it has been observed that during
infancy, a large number of synaptic connections are formed. As the organism matures,
the less frequently used synapses degrade and eventually disappear. Pruning steps were
defined, and well-established research by him into three steps generally. First, the initial
model is trained using standard methods, with the author positing that the magnitude of
the weights indicates their importance. Next, weights below a certain threshold in the
initial model are set to zero, effectively pruning the connections. Finally, the model is
retrained to allow the remaining weights to compensate for any loss in accuracy caused
by pruning. To achieve a satisfactory balance between compression ratio and accuracy,
the pruning and retraining steps are repeated multiple times. To extend it, there are two
main approaches: unstructured pruning and structured pruning. As illustrated in

Figure 4.11, pruning nodes or neurons are generally categorized as structured pruning,
whereas pruning individual weights/connections are classified as unstructured.
Unstructured pruning operates at a finer granularity, allowing any proportion of
redundant parameters to be removed without restriction. However, this can result in an
irregular network structure post-pruning, potentially reducing the effectiveness of model
acceleration. In other words, unstructured pruning selects parameters based on their
importance rather than specific structural units. Conversely, structured pruning works at
a coarser granularity, where the smallest pruning unit is a combination of parameters
within a filter. By setting thresholds and evaluating the contribution of filters or feature
maps, entire filters or certain channels below the threshold are removed, thus narrowing
the network structure. This approach can achieve effective acceleration on existing
software/hardware but may lead to a drop in model prediction accuracy. Therefore, fine-
tuning the pruned model is necessary to compensate and restore its performance. Chen
et al. [22] presented a HashedNets weight-sharing architecture that groups connection
weights into hash buckets randomly by using a low-cost hash function, where all
connections of each hash bucket have the same value. The values of the parameters are
adjusted using the standard backpropagation method [110] during training. Han et

al. [39] pruned redundant connections using a three-step method. First, the network
learns which connections are important and then prunes the unimportant connections.
Finally, they retrain the network to fine-tune the weights for the remaining connections.
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Figure 4.11 Overview of pruning.

In addition to the well-known unstructured and structured pruning methods, several
other techniques have recently gained attention, although most are still categorized
under structured pruning. One of them is filter pruning. Filter pruning focuses on
removing the specific filters (or channels) of a neural network. The idea of filter pruning
is that not all the channels equally contribute to the model's performance; some may be
redundant or less important. This results in a more compact model with fewer
parameters, which reduces both the memory footprint and computational requirement
during inference. The most common approaches in filter pruning include the ranking
filter based on their importance using metrics like L1/L2 norm [61], Taylor Expansion-
based Pruning [84] or evaluating their removal on the loss function. Luo et al. [74]
introduced a filter pruning based on the statistics information from the next layer named
Thinet. Additionally, layer-wise pruning is a more aggressive approach than filter
pruning. Instead of removing the individual filters, entire layers of the network are
pruned. It eliminated not just the filters but also the associated computations and
parameters for a whole layer. For instance, layers that contribute minimally to the final
output or that have a high degree of redundancy might be pruned. Recent works by Chen
and Zhao [19] introduced a layer-wise pruning based on feature representation designed
to reduce the complexity of CNNs while maintaining accuracy. Unlike the previous
traditional pruning methods that focus on connection or filter-wise using weight
information, they identified the redundant parameters by analyzing the features learned
within convolution layers and executing the pruning process at the layer level. However,
this approach requires meticulous consideration and evaluation because removing entire
layers can significantly impact the network's architecture and potentially harm its ability
to learn and generalize.

In recent times, pruning has not only been applied to CNNs but also, again, popularity to
vision transformer (ViT) models. Hou and Kung [45] explored the multidimensional ViT
compression approach that simultaneously targets redundancy reduction across the
attention head, neuron, and sequence dimensions. They introduced a statistical
dependence-based pruning criterion to identify and remove ineffective components
across multiple dimensions. They then optimized the pruning strategy to maximize model
accuracy within a computational budget, using an adapted Gaussian process search with
expected improvement. Additionally, SP-ViT [119] incorporated a soft pruning method
that reduced less informative tokens into a package token rather than removing them
entirely, as identified by the selective module. It achieved significant computational
results on vanilla transformers.



4.3.1.2 Quantization

Quantization with the rapid application of deep learning technology in various fields
such as computer vision, natural language processing, and autonomous driving, a
plethora of deep learning-based network models have emerged. However, these neural
network models are large in parameters and complex in structure, making them suitable
for inference on conventional GPUs but not for deployment on mobile and embedded
devices. In real-world scenarios, these complex models often need to be deployed on low-
cost embedded devices, creating a performance gap. Model quantization has emerged as
a solution to effectively address this performance gap. Quantization is a model
compression technique that converts floating-point storage (and computation) to integer
storage (and computation). During training, complex and high-precision models are
necessary to capture subtle gradient changes for optimization. However, high precision is
not needed during inference as network parameters are fixed and no longer adjusted
based on the loss function. Many parameters in the network are not critical or do not
require high-precision representation. Moreover, experiments have shown that neural
networks are robust to noise, and quantization can be considered as a form of noise. This
means we can simplify the model before deployment by reducing the precision of
representation. Most deep learning training frameworks default to using 32-bit floating-
point numbers for parameter representation and computation. The basic idea of model
quantization is to replace the original floating-point precision with lower precision, such
as 8-bit integers. Simply put, a weight that originally required a float 32 representation
can be represented using Int8 after quantization. Figure 4.12 illustrates the overview of
converting a neural network floating point precision to Int8 precision.
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Figure 4.12 Overview of quantization.

Current mainstream quantization methods are divided into linear quantization and
nonlinear quantization. Linear quantization is the most commonly used method,
particularly in the industry, where 8-bit quantization schemes are widely adopted. Linear
quantization establishes a data mapping between high-precision floating-point values and
low-precision fixed-point values. In nonlinear quantization, various “nonlinear” mapping
functions are used, typically selected based on the characteristics of weight input
distribution in different scenarios. A notable feature of nonlinear mapping is its ability to
map weights of varying importance to different quantization ranges. For instance, if
weight inputs are primarily distributed within a certain range, a nonlinear function can
map these weights to a larger quantized range, enhancing the training process's
sensitivity to the primary weight distribution. Another typical nonlinear quantization
method involves using clustering techniques, such as k-means, during the initial model
quantization phase. Weights are grouped into several clusters, and each cluster is
quantized to the same fixed value to achieve the quantization effect. The foundational
linear and nonlinear quantization methods can be performed using either quantization-



aware training (QAT) or post-training quantization (PTQ) methods. Figures 4.13 and 4.14
illustrate the general workflow of the QAT and PTQ quantization. In general, QAT
integrates into the neural network training process, allowing the model to adjust to the
constraints of low-precision athematic while being trained. During QAT, the weights and
activations are quantized during the forward pass, simulating the conditions under which
the model will operate after deployment. The backward pass uses full precision (FP32) to
ensure accurate gradient updates. The model is also fine-tuned to minimize the accuracy
loss, and quantized parameters are carefully calibrated to preserve performance.
Contrarily, PTQ applies after the models have fully trained without retraining. This
method often applies fine-tuning the quantized model using a calibration dataset (from
training datasets) to mitigate potential accuracy loss. Both techniques can be utilized
depending on the task one wants to perform or the types of hardware used. QAT usually
requires more time due to a full training step, whereas PTQ is faster and more
straightforward as it is applied after the model has been fully trained. PTQ is ideal when
the original data is limited or unavailable. On the other hand, QAT learns to operate
under quantization constraints, it can better handle the potential pitfalls of low-precision
arithmetic, such as reduced dynamic range and quantization errors.
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Figure 4.13 Overview of quantization-aware training (QAT).
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Figure 4.14 Overview of post-training quantization (PTQ).

Courbariaux et al. [25] proposed a binary neural network to quantify the weights. More
specifically, it restricts the value of the network weight by setting it to the value —1 or 1,
and it simplifies the design of hardware that is dedicated to deep learning. Gong et

al. [33] employed the k -means clustering algorithm to quantize the weights of fully



connected layers, which could achieve up to 24 times the compression of the network
with only a 1% loss of classification accuracy for the CNN network in the ImageNet
challenge. Ding et al. [31] introduced an accurate PTQ framework for vision transformers
(APQ-ViT) that includes a unified block-wise calibration scheme to optimize quantization
by addressing crucial errors on a block-by-block basis. Additionally, they introduced
Matthew-Effect Preserving Quantization for the softmax function. Q-ViT [62] is one of the
pioneers to introduce the QAT in the ViT. Q-ViT introduces an information rectification
module (IRM) and a distribution guided distillation (DGD) scheme to reduce information
distortion in the quantized self-attention map using low-bit quantization. Additionally,
researchers have been more interested in applying mixed-precision quantization than
single-precision in the full model. The idea behind this is to ensure higher precision in the
sensitive layers (e.g., 16-bit or 8-bit) and lower precision in the less sensitive layers (e.g.,
4-bit). For example, Tang et al. [102] proposed a novel method for mixed-precision
quantization that utilized learnable scale factors as importance indicators to determine
optimal bit-widths for each layer efficiently, significantly reducing search time and
improving accuracy.

Lastly, quantization has not only been used in imaging; quantization is getting popular in
compressing large language models (LLMs). The number of parameters of an LLM model
is currently in billions and is expected to grow to trillions in the future. As a result,
compressing the model is required to deploy LLMs in edge devices. Most of the LLMs
currently use the PTQ technique as QAT can not scale up easily [65] in LLMs. Q-

BERT [98] is the first work to apply quantization to the Bidirectional Encoder
Representations from Transformers (BERT) model. They introduced a group-wise
quantization and used a Hessian-based mix-precision technique to compress the model.
One of the recent works by Xiao et al. [111] proposed a PTQ named Smoothquant for
LLMs enabling 8-bit weight and 8-bit activations where they smooth the activation
outliers, particularly focusing on mitigating the impact of outliers in activations and
weights with a mathematically equivalent transformation. Extended to the Smoothquant
work from the same MIT Han lab proposed AWQ [65] which minimizes the quantization
error by preserving 1% of the salient weights. They use the activation distribution to
identify the salient weight channels. This quantization technique is deployed on different
edge devices, including Jetson Orin and Rasberry Pi4, and has also been experimented
with on TinyChat.

4.3.1.3 Low-Rank Approximation

Low-rank approximation refers to reconstructing the dense matrix to estimate the
representative parameters. If we consider the weight matrix of the original network as a
full-rank matrix, we can use various low-rank approximation methods to decompose a
large matrix multiplication into a series of multiplications between smaller matrices. This
reduces the overall computation and accelerates the model's execution. First, let's
understand what low rank and matrix rank mean. The rank of a matrix measures the
linear independence of its rows and columns. A matrix is a full rank if all its rows and
columns are linearly independent. The rank is determined by the number of nonzero rows
or columns. In essence, the rank quantifies the matrix's inherent correlation. Consider an
orchestra rehearsing a complex symphony. If each musician focuses on their own sheet
music and their performances are well-coordinated, the entire piece will be harmonious,
akin to a full-rank matrix where each part is linearly independent, with no redundancy.
However, if some musicians ignore the conductor or disrupt the rhythm—for instance, if a
violinist plays a different melody and others follow—then the orchestra's performance
becomes chaotic. At this point, the orchestra resembles a low-rank matrix because parts
of the performance are linearly dependent, losing their independence. This example
illustrates that when all parts are independent and coordinated, the system (or matrix)
has a high rank, is orderly, and problems are easily solved. Conversely, when parts



influence each other and lose independence, the system's (or matrix's) rank decreases,
leading to disorder and making problems harder to solve. In mathematics, the rank of a
matrix is defined as the maximum number of linearly independent vectors within it, which
can be understood as the degree of order. Since the rank measures correlation, the
correlation within a matrix represents its structural information. If the rows of a matrix
are highly correlated, the matrix can be projected into a lower-dimensional linear
subspace, meaning it can be represented by a few vectors and is, therefore, low-rank. In
summary, if a matrix represents structural information, such as images or user-item
recommendation tables, it generally has a certain degree of correlation between its rows,
making it typically low-rank. Regarding the low-rank estimation compression technique,
some recent work was conducted. For example, Denton et al. [30] use singular value
decomposition to reconstruct the weight of all connected layers. They triple the speedups
of convolutional layers on both CPU and GPU, and the loss of precision is controlled
within 1%. Denil et al. [28] employ low-rank approximation to compress the weights of
different layers and reduce the number of dynamic parameters. Sainath et al. [96] uses a
low-rank matrix factorization on the final weight layer of a DNN for acoustic modeling.

4.3.1.4 Knowledge Distillation

Knowledge distillation is also called teacher-student training. The idea of knowledge
distillation is to adopt a teacher-student strategy and use a pretrained network to train a
compact network for the same task [97]. It was first proposed by Caruana and
coworkers [14]. They used a compressed network of trained network models to mark
some unlabeled simulation data and reproduced the output of the original larger network.
Figure 4.15 provides a visual summary of the knowledge distillation process within a
neural network. It shows how knowledge is transferred from a Teacher Model to a
Student Model. Knowledge distillation is primarily a technique used to transfer
knowledge from one neural network to another, which can be either homogeneous or
heterogeneous. The process begins by training a teacher network, which is then kept
fixed during the distillation process. The output from this pretrained teacher network,
along with the actual labels of the data, is used to train a student network. This two-step
training process enables the student model to effectively learn the rich knowledge from
the teacher model while also being refined using the ground truth labels. In constructing
the loss function for knowledge distillation, one component is the Distill Loss, which is
calculated as the cross-entropy between the soft targets from the teacher network and
the softmax outputs of the student network. The other component is Student Loss, which
is the cross-entropy between the ground truth labels and the softmax outputs of the
student network. Knowledge distillation can be employed to compress a large network
into a smaller one while retaining performance close to that of the larger network.
Additionally, it can consolidate the knowledge learned by multiple networks into a single
network, thereby achieving performance levels comparable to an ensemble of models.
The work in [12] trained a parametric student model to estimate a Monte Carlo teacher
model. Luo et al. [7Z3] use the neurons in the hidden layer to generate more compact
models and preserve as much of the label information as possible. Based on the idea of
function-preserving transformations, the work in [20] instantaneously transfers the
knowledge from a teacher network to each new, deeper, or wider network. However,
using a shared hyperparameter between student and teacher requires a precise match in
range and variance, which limits the performance of the student models due to the
teacher's inherent logit patterns, which are already enough for effective learning. To
overcome the limitations of shared hyperparameter in distillation, Sun et al. [101]
introduced a hyperparameter based on the weighted standard deviation of logits and
applying a Z-score standardization before softmax and Kullback-Leibler divergence. This
approach allows the student to focus on key logit relationships rather than matching
magnitudes, addressing issues where the traditional hyperparameter sharing fails.
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Figure 4.15 Overview of knowledge distillation.

Although knowledge distillation has been widely adopted, especially before deploying
models, it has shown exceptional performance as a model compression technique for
classification problems. Recently, LLMs have also garnered significant attention. For
example, the lightweight versions of BERT, made possible through knowledge distillation,
have enabled its use on edge devices. However, as larger models with more parameters
emerge, there is a pressing need to explore new knowledge distillation techniques and
develop innovative algorithms to effectively leverage these advanced models.

4.3.1.5 Combined Compression Techniques

Every compression technique has pros and cons or is sometimes unsuitable for the
specific tasks to be performed in the hardware. As a result, researchers mixed different
compression techniques and achieved better outcomes than the baseline results. Han et
al. [38] coalesced pruning with quantization for model reduction and Huffman coding to
reduce the storage requirement. Aghli and Ribeiro [1] combined weight pruning and
knowledge distillation to compress the CNN models and solved the dimension
dependencies of complex models like ResNets. They initially apply weight pruning
selectively to specific layers within the CNN model to maintain the integrity of the
network's structure. Following this, they implement knowledge distillation along with a
customized loss function to further compress the layers that were not pruned, enhancing
overall model efficiency. On the other hand, ViT also unified multiple compression
techniques to achieve better accuracy with lower latency in edge devices. Yu et al. [113]
addressed the high computational demands of ViTs by proposing a unified compression
framework that combines layer-wise pruning, layer skipping, and knowledge distillation.
Unlike existing approaches focusing on only one or two aspects of compression, this
framework integrates all three techniques into an end-to-end, budget-constrained
optimization process. The method jointly learns model weights, pruning ratios, and skip
configurations under a distillation loss and is solved using the primal-dual algorithm. The
experiment on ViT in ImageNet datasets can shrink to 50% of the original flops.

Knowledge distillation is mostly common when combining compression techniques
because it provides a form of regularization that makes the student model more robust to
the structural changes introduced by pruning or quantization. However, Qualcomm Al
research [59] introduced Bayesian Bits for combining mixed-precision quantization and
pruning. They use learnable stochastic gates to control bit widths, promoting low-bit
solutions. As compression techniques continue to evolve, integrating methods like
pruning, quantization, and knowledge distillation into unified frameworks represents a



significant leap forward. These unified compression techniques not only push the
boundaries of model efficiency but also ensure that deep learning models remain
practical for real-world applications on edge devices.

4.3.2 Hardware-Software Codesign for Edge Optimization

Hardware-software codesign is a collaborative approach to system design in which
software and hardware components are developed simultaneously. It maximizes edge
devices' performance, efficiency, and scalability, balancing computational demand with
available hardware resources. Figure 4.16 illustrates a hardware-software codesign's
general workflow and components for efficiently deploying AI models into edge devices.
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Figure 4.16 Overview of hardware-software codesign.

Tuli et al. [105] proposed a codesign framework named CODEBench for CNNs and their
corresponding hardware accelerators. They addressed the limitation of search space and
suboptimal exploration techniques. CODEBench consists of CNNBench (optimize CNN
using a Bayesian second-order gradient search technique) and AccelBench (cycle-
accurate simulations of hardware accelerator). CODEBench achieved higher top-1
accuracy, lower latency, and lower energy consumption on both ImageNet and Cifar
datasets compared to the state-of-the-art pair on FPGA and Nvidla. Hardware-software
codesign is explored and thriving in the CNN-based model and has also been successfully
proposed for transformer-based models. For example, Zhou et al. [118] proposed an
architecture named TransPIM that exemplifies software-hardware codesign by
integrating processing-in-memory (PIM) techniques with transformer models. On the
software level, it adopts a token-based dataflow to avoid inter-layer data flows;
correspondingly, TransPIM incorporates lightweight modifications to the conventional
high bandwidth memory architecture on the hardware level. The overall results achieved
2.0x more throughput than existing ASIC-based accelerators.

Moreover, Hardware-software codesign on FPGA needs to map onto the FPGA's
reconfigurable logic fabric, where custom PEs, such as systolic arrays or specialized
arithmetic units, are instantiated to accelerate the different tasks such as object
detection, image classification [2, 10, 108]. Li et al. [64] evaluated each module of the
BEVDet (camera-based) and PointPillars (LiDAR-based) on FPGA and GPU to give
insights about the necessity of the hardware-software codesign in the multimodal models.
One of the recent works by Anupreetham et al. [10] proposed an end-to-end pipelined
FPGA-based hardware-software codesign object detection system with 8x improvement
in throughput. Wang et al. [108] explored the YOLOv2 model for CPU+FPGA platforms
introducing a sparse convolution algorithm and FPGA accelerator architecture based on
asynchronously executed parallel convolution cores. Although hardware-software on



FPGA is evolving, it must be explored for real-time applications and resource-demanded
models like transformers.

Additionally, Hardware-software codesign can be explored for multimodal multitask
learning in autonomous systems. For instance, Hao and Chen [42] have comprehensive
studies about the challenges, opportunities, and possible solutions in the future in the
autonomous systems field.

4.3.3 Applying Deep Learning Models on Resource-Constrained Edges

First, let's explore what resource-constrained edge computing devices are. These devices
have limitations in computational power, memory, storage, energy consumption, and
network bandwidth. Typically, they are deployed in edge computing environments to
process and analyze data generated near the source in real-time, rather than transmitting
it to a remote data center for processing. As computational capabilities advance to
support deep learning, the new task for edge computing is to perform deep learning
training and inference directly on these devices. Currently, there is a significant body of
work focusing on implementing deep learning on edge devices. For example, Google

Inc. [46] presented efficient CNN for mobile vision applications, called MobileNets. The
two hyperparameters that Google introduced allow the model builder to choose the right-
sized model for the specific application. It not only focuses on optimizing for latency but
also builds small networks. MobileNets are generated mainly from depthwise separable
convolutions, which were first introduced in the work of [100] and subsequently
employed in Inception models [50]. Flattened networks [53] are designed for fast
feedforward execution. They consist of a consecutive sequence of one-dimensional filters
that span every direction of three-dimensional space to achieve comparable performance
as conventional convolutional networks [107]. Another small network is the Xception
network [24]; Chollet et al. propose the dubbed Xception architecture inspired by
Inception V3, where Inception modules have been replaced with depthwise separable
convolutions. It shows that the architecture slightly outperforms Inception V3 on the
ImageNet data set. Subsequently, Iandola et al. [47] developed Squeezenet, a small CNN
architecture. It achieves AlexNet-level [56] accuracy with 50 times fewer parameters on
the ImageNet data set (510 times smaller than AlexNet). In 2017, Microsoft Research
India proposed Bonsai [57] and ProtoNN [37]. Then, they developed EMI-RNN [29] and
FastGRNN [58] in 2018. Bonsai [57] refers to a tree-based algorithm used to efficiently
predict devices in the IoT. More specifically, it is designed for supervised learning tasks
such as regression, ranking, and multiclass classification. ProtoNN [37] is inspired by k-
Nearest Neighbor (KNN) and could be deployed on the edges with limited storage and
computational power (e.g., an Arduino UNO with 2 kB RAM) to achieve excellent
prediction performance. EMI-RNN [29] requires 72 times less computation than standard
Long Short-Term Memory Networks (LSTM) [44] and improves accuracy by 1%. Apple
also developed efficient hybrid models named MobileViT [78] combining the strengths of
both CNNs and ViTs to develop a lightweight and low latency network for mobile vision
tasks. The main idea of MobileVit is to design transformers as convolutions in a way that
the resultant MobileViT block has convolution-like properties while simultaneously
allowing for global processing. MobileViT can successfully deploy on different mobile
devices without extra effort (tested on iPhone 12). With fewer parameters, it performed
6.2% more accurately than MobileNetv3 and achieved 74.8% top-1 accuracy on the
ImageNet dataset. Although MobileViT achieved high accuracy on mobile devices, it can
not achieve low latency. Thereupon, apple proposed MobileViTv2 [79] and introduced a
separable self-attention method with linear complexity to solve the bottleneck of
multiheaded self-attention in transformers from MobileViT. This MobileViTv2 is the state-
of-the-art for several mobile vision tasks, including object classification and detection.



However, due to its unique architecture, additional work such as hardware design,
resource allocation, and scheduling is always required when deep learning models need
to deploy on FPGA. Hardware acceleration is the most critical design in the workflow to
facilitate the Al deployment of FPGA. Several works have been published that propose a
hardware acceleration technique for FPGA. However, most have experimented with
image classification and are still in the primary stage for real-world scenarios. For
example, Auto-ViT-Acc [63] is one of the first works on ViT, which strategically utilized
mixed precision across transformer blocks to match the computational demands and
resource limitations of FPGAs. By allocating different bit-widths to PEs, the framework
supported parallel processing of the ViT data flow and achieved 0.47%-1.36% higher Top-
1 accuracy under the same bit-width. Additionally, ViA [109] proposed a framework to
overcome the significant processing power, path dependences, and memory bandwidth
caused by ViT. ViA minimizes arisen path dependence from the model's shortcut
mechanism, thereby optimizing the computational flow and securing efficient utilization
of FPGA resources by employing a half-layer mapping strategy coupled with thorough
throughput analysis. Furthermore, the architecture features two distinct reuse
processing engines incorporating internal streams, diverging from traditional FPGA
designs. The results indicated that it outperformed conventional computing platforms like
NVIDIA's Tesla V100 in terms of energy efficiency, achieving approximately 5.2x better
performance. Both works mainly focused on image classification tasks. In conclusion,
edge computing has evolved significantly, enabling deep learning models to run
efficiently on edge devices.

4.4 Edge Intelligent System Design and Optimization

Edge computing holds significant potential for expanding or even enhancing analytics
capabilities that were previously limited to cloud environments [18]. In the meanwhile,
given that intelligence is essential for quickly analyzing large data volumes and
extracting insights, there is a growing demand to implement intelligence at the edge.
Executing intelligent tasks near the data, rather than sending it to a remote server,
enhances task efficiency and lowers the risk of data interception or leakage [72].

In this section, we focus on designing and optimizing EI systems, examining how to
efficiently run Al models at the edge while addressing key factors such as algorithm
performance, cost, privacy, reliability, and overall efficiency. Specifically, we delve into
the implementation of EI, discussing key aspects such as (1) how to train models at the
edge and (2) how to perform model inference at the edge.

4.4.1 Training on Edge

Model training plays a crucial role in setting the parameters of machine learning
frameworks (such as neural networks) based on input data [66, 67]. Due to the limited
computational capabilities of edge devices, this process has traditionally been performed
off-device, often by sending data to a central server to free up computational resources
for model inference. As a result, training machine learning models directly at edge nodes
or servers is still relatively uncommon [70].

However, the concept of EI aims to leverage the data generated or collected by edge
devices and train models locally rather than transmitting the data to a central server.
This approach effectively addresses privacy and network concerns, providing a more
secure and robust model training process that supports the development of practical Al
services.

First, we focus on one of the most critical aspects of Al at the edge: how to train models
at the network edge. We introduce the basic architecture of edge training, discuss



optimization techniques, and explore federated learning, the most widely used method for
this purpose.

4.4.1.1 Architecture for Model Training on Edge

. Centralized Architecture: Centralized architecture [71, 88], commonly referred to
as client-server architecture, involves a system where a group of client edges
requests and obtains services from a centralized server or cloud. In this model, the
centralized server or cloud awaits service requests from the client edges and
responds via a standardized interface. The client edges do not need to be aware of
the specific details or configurations of the centralized server or cloud. This
computing approach is particularly efficient when the client edges and the
centralized server or cloud handle distinct, routine services.

. Decentralized Architecture: Decentralized architecture [71], also known as peer-
to-peer (P2P) architecture, offers an alternative approach for communication and
collaboration between edges and clouds. In this model, two edges can communicate
and interact directly without involving a third party. Computing tasks are distributed
among the edges, allowing them to both contribute and consume resources within the
edge network, eliminating the need for a centralized server.

4.4.1.2 Optimization for Training

Once model training at the edge is adopted, it is essential to address the optimization
challenges of the training process. The goal of optimization is to account for factors such
as data distribution, computational power, and network capacity while ensuring that
distributed edge deployment is feasible. Since solo training resembles the centralized
architecture, our focus is primarily on collaborative training approaches. In this context,
training optimization refers to improving the process to meet specific requirements, such
as time efficiency, energy consumption, accuracy, and privacy protection. The main
objective here is to accelerate the training process on resource-constrained edge devices,
which can be approached in three key areas.

- Processing efficiency: It has been observed that the complexity of the training
model significantly impacts time efficiency, especially when the device lacks
sufficient computing resources [75]. To expedite the process, one approach is to
reduce training time by using transfer learning, where learned features are
transferred and cached locally for further training, thereby speeding up the overall
process. Additionally, edge devices can collaborate and learn from each other, further
enhancing training efficiency.

- Communication efficiency: To achieve communication efficiency, the focus is on
reducing both the frequency and cost of communications. In other words, minimizing
how often communication occurs and reducing the size of each communication
exchange are key strategies for lowering communication costs. For instance, the
authors in [68, 69] introduced collaborative training technologies on the edges for the
Al-based prediction model and multitarget multiobject tracking. Besides the
frequency of training updates, the size of these updates also impacts bandwidth
usage. Gradient compression techniques, such as gradient quantization and gradient
sparsification [15], can be employed to reduce the size of updates, thereby enhancing
communication efficiency.

4.4.1.3 Collaborative Training

With the increasing computational and memory capabilities of edge devices, it raises the
question of whether relying on the cloud for data processing is always necessary and



whether innovative approaches can be implemented on the edge to address big data
challenges. In response to these considerations, Lu et al. [68] propose a collaborative
learning framework at the edge, called CLONE, which primarily demonstrates its
effectiveness in reducing latency and preserving privacy (Figure 4.17).
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Figure 4.17 The framework of CLONE. The CLONE framework operates by allowing
each edge node to locally train or run a neural network model using its own private data,
while simultaneously sending its parameters to a central Parameter EdgeServer during
the training or inference phase. The Parameter EdgeServer then performs necessary
operations, such as aggregating the uploaded parameters, before transmitting the
updated parameters back to the edge nodes. Source: Adapted from Lu et al. [68].

4.4.2 Model Inference on Edge

Edge inference is a key aspect of EI. As modern neural networks grow larger, deeper, and
more complex, they demand increasingly substantial computing resources. This makes it
challenging to run high-performance models directly on edge devices, such as mobile
phones, IoT terminals, and embedded systems, which have limited computational power.
Nevertheless, edge inference, as an essential part of EI, must be executed at the edge,
where its overall performance (e.g., execution time, accuracy, and energy efficiency) can
be significantly constrained by the device's capabilities. Here, we explore various
frameworks and approaches aimed at bridging the gap between task requirements and
device limitations.

4.4.2.1 Model Design

Recent studies have concentrated on developing lightweight neural network models that
can be efficiently executed on edge devices with fewer hardware requirements. Based on
the model design strategies, the existing literature can be grouped into two categories:
architecture search and human-designed architecture. The former involves machines
autonomously determining the optimal architecture, while the latter relies on human
expertise to craft the architecture.



- Human-designed architectures: While architecture search has shown significant
potential for model design, it continues to face challenges related to hardware
requirements. As a result, researchers are increasingly focusing on human-designed
strategies. For instance, they have developed lightweight deep neural networks, such
as MobileNets [55], specifically for mobile and embedded devices by utilizing depth-
wise separable convolutions. Another approach to reducing computational costs is the
use of group convolutions, which has been employed to create foundational
architectures like Xception [24].

. Automotic architecture search: Human-designed architectures are often time-
consuming and require significant expertise. As a more efficient alternative, using Al
to search for existing architectures and identify the optimal one for edge
environments has gained traction. Automated search architectures like NASNet [120]
and AmoebaNet [93] have demonstrated competitive, and sometimes superior,
performance in tasks such as classification and recognition. However, despite the
promising results of architecture search in model design, its popularity is still limited
by the substantial hardware requirements it demands.

4.4.2.2 Efficient Al

Despite the widespread application and high performance of DNNs, their computational
complexity remains a significant limitation, particularly for resource-constrained edge
devices. High power consumption and latency can hinder system performance or even
lead to crashes, as most edge devices are not built for compute-intensive tasks. Several
approaches have been developed to address this issue. One approach is the design of
specialized chips for deep learning, which accelerates tasks using dedicated hardware.
Another solution is software-based, which involves evaluating whether all computations
within the model are necessary. If not, the model can be simplified, reducing both the
computational load and storage requirements.

Like other machine learning methods, DNNs consist of two phases: training and
inference. During training, the model learns its parameters based on the training dataset,
while in inference, the model uses test data to produce final results.
Overparameterization refers to a scenario where numerous parameters are required
during training to capture model fluctuations, but fewer are needed during inference.
This allows the model to be simplified after training before being deployed at the edge for
inference. Simplifying the model offers several advantages, including: (1) Reduced
computation, leading to lower power consumption and shorter computation time. (2) A
smaller memory footprint, allowing deployment on lower-end devices. More compact
packages for application updates and releases. (3) This software-based technique is
called model compression. It has a low implementation cost and is complementary to
hardware acceleration, with the two methods potentially benefiting from each other.
Model compression methods can be classified into four main categories: network pruning,
quantization, knowledge distillation, and low-rank factorization.
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Figure 4.18 An overview of the TensorRT-enabled framework, which integrates popular
object detection models from frameworks such as PyTorch, TensorFlow, and ONNX,
along with NVIDIA GPUs, into TensorRT precision modes to optimize AI inference
performance. Source: Jafarpourmarzouni et al. [52]/IEEE.

4.4.2.3 Optimization Tool

Recently, researchers have turned their attention to TensorRT as a means to accelerate
model inference while maintaining performance on resource-constrained edge devices
(Figure 4.18). Sumaiya et al. [52] performed a comparative analysis of four different
workflows using popular object detection models on TensorRT for Full Precision (FP32),
Half Precision (FP16), and Integer Precision (INT8). Their findings highlight the
inference performance and accuracy associated with each workflow. This chapter
provides a comprehensive guide for selecting the most suitable workflow based on
specific needs for inference performance and accuracy, offering valuable insights for
advancements in edge devices (e.g., software-defined vehicles) and other real-time
systems.

4.4.2.4 Collaborative Inference

Recently, researchers have also proposed collaborative inference frameworks for diverse
edge computing applications. For example, as shown in Figure 4.19, Lu et al. [69]
proposed a collaborative inference framework for multitarget multicamera tracking.
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Figure 4.19 A depiction of the collaborative inference pipeline for the multitarget
multicamera tracking. Source: Lu et al. [69]/IEEE.

To be concrete, as shown in Figure 4.19, multiple video streams from different cameras
(labeled Camera 1, Camera 2, and so on) are captured. This is the initial input where
each camera provides its own set of video data. The video streams are passed through a
target detection algorithm, such as YOLOvV3 in this case, which identifies and outlines
multiple targets (e.g., people) within the scene. Detected targets are represented by
bounding boxes on the images. After target detection, features are extracted using wide
residual networks to create an appearance descriptor (AD), which captures how the
target looks (appearance features). Kalman filtering is applied to estimate and predict the
target's motion over time, generating a motion descriptor (MD), which focuses on the
movement of the target.

The detected and predicted appearance and MDs are then used to associate the detected
targets with their identities across multiple frames and cameras. This data association is
done using two main distance metrics: (1) Cosine distance: it is used to match the ADs
across frames. (2) Mahalanobis distance: it is Used to match the MDs based on their
predicted movement trajectories. Finally, the targets are tracked across multiple
cameras, with the corresponding bounding boxes highlighted on the camera feeds. This
process allows the system to consistently track multiple individuals as they move across
different camera views.

4.5 Summary and Practice

4.5.1 Summary

The rapid evolution of Al and edge computing has given rise to EI, a groundbreaking
solution to the challenges posed by the enormous data volumes generated in our
interconnected world. By shifting data processing to the network's edge, this innovative
approach significantly reduces bandwidth consumption and associated costs while
maintaining high-quality services, offering a compelling alternative to traditional cloud-
based processing. In this chapter, we've defined EI as the ability of edge devices to
execute Al algorithms locally. This capability extends to processing a wide array of data
types, including video streams, natural language, time-series information, and
unstructured sensor data, without the need for cloud uploads. To enable EI, a diverse
ecosystem of technologies has emerged. On the hardware front, specialized components
such as ASICs, FPGAs, and GPUs have been developed to accelerate Al tasks while
minimizing power consumption. Complementing these advancements, software
frameworks like TensorFlow Lite, CoreML, XNNPACK, and QNNPACK have been
optimized for edge environments, facilitating efficient Al inference on devices with
limited resources. We've also explored the critical role of collaboration between cloud



and edge systems, as well as edge-to-edge interactions. These collaborative approaches
are essential for distributed deep learning and real-time processing, enabling models to
be trained in the cloud and deployed efficiently at the edge, with the added benefit of
local fine-tuning based on edge-generated data. Various compression techniques play a
pivotal role in adapting complex Al models for edge deployment. Methods such as
parameter sharing, pruning, quantization, and low-rank approximation effectively reduce
model size and computational demands, making it feasible to run sophisticated AI models
on resource-constrained edge devices. Furthermore, we've highlighted knowledge
distillation as a powerful technique for transferring insights from large, pretrained
models to smaller, more efficient versions suitable for edge deployment. This process
ensures that the streamlined models maintain high accuracy while optimizing for low
latency, energy efficiency, and minimal memory usage. Moreover, we highlighted the
unified compression techniques in both CNN and ViT models to discuss the future scope
of the model compression techniques. Subsequently, hardware-software codesign is also
crucial in optimizing performance and balancing computational demands with hardware
capabilities in devices like FPGAs. Recent works have demonstrated significant
improvements in throughput and efficiency through this codesign approach, such as in
YOLOvV2 implementations on CPU+FPGA platforms. Accelerating. Moreover, from early
models like MobileNets and SqueezeNet to more recent hybrid models like MobileViT and
MobhileViTv2, the emphasis has shifted toward directly balancing accuracy, latency, and
efficiency to meet the demands of real-time applications without any additional huddle.
On the other hand, as the need for deploying those complex models on specialized
hardware like FPGAs grows, hardware-accelerating techniques such as Auto-ViT-Acc and
ViA are emerging to tackle the unique challenges posed by ViTs. Both software and
hardware design architecture developments are needed to expedite the Al deployment on
edge devices. In essence, EI represents the convergence of Al and edge computing,
providing a robust framework for deploying advanced Al capabilities directly at the
network edge. By leveraging cutting-edge hardware, optimized software, collaborative
processing, and model compression techniques, EI promises to revolutionize Al
applications across diverse domains, from smart home systems to autonomous vehicles,
enhancing both performance and efficiency.

4.5.2 Practice Questions

1. How does edge computing hardware differ from traditional data center hardware?

2. Discuss the advantages and challenges of implementing machine learning at the
edge.

3. What are the key considerations in choosing an edge application development
framework?

4. How does integrating hardware accelerators impact the design of machine learning
models for edge deployment?

5. Discuss the role of software-hardware codesign in optimizing resource-constrained
edge computing environments.

4.5.3 Course Projects

1. Develop a simple edge computing application using a containerization platform.

2. Prune a classical neural network model to reduce both model size and latency.
Understand the basic concept of pruning, implement and apply a few pruning
approaches, get a basic understanding of performance improvement (such as
speedup) from pruning, and understand the differences and tradeoffs between these
pruning approaches.



3. Quantize a classical neural network model to reduce both model size and latency.
Understand the basic concept of quantization, implement and apply a few
quantization approaches, get a basic understanding of performance improvement
(such as speedup) from quantization, and understand the differences and tradeoffs
between these quantization approaches.

4. Use knowledge distillation to compress a classical neural network model to reduce
both model size and latency. Understand the basic concept of knowledge distillation
and get a basic understanding of performance improvement (such as speedup) from
knowledge distillation.

5. Using model compression techniques, optimizing large language models (LLMs) on
edge devices (e.g., your laptop). A good example can be found at Github:
https://github.com/mit-han-lab/tinychat-tutorial?tab=readme-ov-file.
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Chapter 4 Suggested Papers

1 Jude Haris et al. “SECDA: Efficient hardware/software co-design of FPGA-based DNN
accelerators for edge inference”. In: 2021 IEEE 33rd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). IEEE. 2021, pp.
33-43.

2 Jakub Konec¢ny et al. “Federated learning: Strategies for improving communication
efficiency”. In: arXiv preprint arXiv:1610.05492 (2016).

3 Xingzhou Zhang et al. “OpenEI: An open framework for edge intelligence”. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE.
2019, pp. 1840-1851.

4 Zhi Zhou et al. “Edge intelligence: Paving the last mile of artificial intelligence with
edge computing”. In: Proceedings of the IEEE 107. 8 (2019), pp. 1738-1762.

References

1 Nima Aghli and Eraldo Ribeiro. “Combining weight pruning and knowledge distillation
for CNN compression”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 3191-3198.

2 Afzal Ahmad, Muhammad Adeel Pasha, and Ghulam Jilani Raza. “Accelerating tiny
YOLOvV3 using FPGA-based hardware/software co-design”. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE. 2020, pp. 1-5.

3 Amazon Web Services. AWS Snowball. https://aws.amazon.com/cn/snowball/.
Accessed: 2024-07-09. 2024.

4 Amazon Web Services. AWS Snowcone. https://aws.amazon.com/cn/snowcone/.
Accessed: 2024-07-09. 2024.

5 Amazon Web Services. AWS IoT Greengrass. https://aws.amazon.com/greengrass/.
Accessed: 2024-07-10. 2024.

6 Amazon Web Services, Inc. Amazon SageMaker Neo: Train Once, Run Anywhere.
https://aws.amazon.com/sagemaker/neo/. Accessed: 2024-08-21. 2024.

7 Amazon Web Services, Inc. Amazon SageMaker Edge.
https://aws.amazon.com/sagemaker/edge/. Accessed: 2024-08-20. 2024.

8 Amazon Web Services, Inc. AWS RoboMaker. https://aws.amazon.com/cn/robomaker/.
Accessed: 2024-01-20. 2024.

9 AMD Xilinx. Vitis Al. https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.
2024. (Visited on 08/20/2024).

10 Anupreetham Anupreetham et al. “High throughput FPGA-based object detection via
algorithm-hardware co-design”. In: ACM Transactions on Reconfigurable Technology
and Systems 17. 1 (2024), pp. 1-20.

11 Apple Inc. Core ML Documentation.
https://developer.apple.com/documentation/coreml. Accessed: 2024-05-20. 2024.



https://aws.amazon.com/cn/snowball/
https://aws.amazon.com/cn/snowcone/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/cn/robomaker/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://developer.apple.com/documentation/coreml

12 Anoop Korattikara Balan et al. “Bayesian dark knowledge”. In: Advances in Neural
Information Processing Systems 28 (2015).

13 Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. “Are FPGAs suitable for edge
computing?” In: USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18).
2018.

’

14 Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. “Model compression”.
In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2006, pp. 535-541.

15 Yi Cai et al. “Long live time: Improving lifetime for training-in-memory engines by
structured gradient sparsification”. In: Proceedings of the 55th Annual Design
Automation Conference. 2018, pp. 1-6.

16 Canonical Ltd. LXD - The system container manager. https://canonical.com/Ixd.
Accessed: 2024-08-14. 2024.

17 Jie Cao et al. “EdgeOSH: A home operating system for internet of everything”. In:
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2017, pp. 1756-1764.

18 Junzhou Chen and Sidi Lu. “An advanced driving agent with the multimodal large
language model for autonomous vehicles”. In: 2024 IEEE International Conference on
Mobility, Operations, Services and Technologies (MOST). IEEE. 2024, pp. 1-11.

19 Shi Chen and Qi Zhao. “Shallowing deep networks: Layer-wise pruning based on
feature representations”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 41. 12 (2018), pp. 3048-3056.

20 Tianqgi Chen, Ian Goodfellow, and Jonathon Shlens. “Net2net: Accelerating learning
via knowledge transfer”. In: arXiv preprint arXiv:1511.05641 (2015).

21 Tianqgi Chen et al. “MxNet: A flexible and efficient machine learning library for
heterogeneous distributed systems”. In: arXiv preprint arXiv:1512.01274 (2015).

22 Wenlin Chen et al. “Compressing neural networks with the hashing trick”. In:
International Conference on Machine Learning. PMLR. 2015, pp. 2285-2294.

23 Yu Cheng et al. “A survey of model compression and acceleration for deep neural
networks”. In: arXiv preprint arXiv:1710.09282 (2017).

24 Francois Chollet. “Xception: Deep learning with depthwise separable convolutions”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 1251-1258.

25 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “BinaryConnect:
Training deep neural networks with binary weights during propagations”. In: Advances
in Neural Information Processing Systems 28 (2015).

26 Mike Davies et al. “Loihi: A neuromorphic manycore processor with on-chip learning”.
In: IEEE Micro 38. 1 (2018), pp. 82-99.

27 DDS. DDS Foundation. https://www.dds-foundation.org/. Accessed: 2024-01-10. 2024.

28 Misha Denil et al. “Predicting parameters in deep learning”. In: Advances in Neural
Information Processing Systems 26 (2013).


https://canonical.com/lxd
https://www.dds-foundation.org/

29 Don Dennis et al. “Multiple instance learning for efficient sequential data
classification on resource-constrained devices”. In: Advances in Neural Information
Processing Systems 31 (2018).

30 Emily L Denton et al. “Exploiting linear structure within convolutional networks for
efficient evaluation”. In: Advances in Neural Information Processing Systems 27
(2014).

31 Yifu Ding et al. “Towards accurate post-training quantization for vision transformer”.
In: Proceedings of the 30th ACM International Conference on Multimedia. 2022, pp.
5380-5388.

32 Zidong Du et al. “ShiDianNao: Shifting vision processing closer to the sensor”. In:
Proceedings of the 42nd Annual International Symposium on Computer Architecture.
2015, pp. 92-104.

33 Yunchao Gong et al. “Compressing deep convolutional networks using vector
quantization”. In: arXiv preprint arXiv:1412.6115 (2014).

34 Google. XNNPACK. https://github.com/google/ XNNPACK. GitHub repository. 2024.
(Visited on 08/20/2024).

35 Google Cloud. Edge TPU. https://cloud.google.com/edge-tpu. Accessed: 2024-07-09.
2024.

36 Google Cloud. Google Kubernetes Engine. https://cloud.google.com/kubernetes-

37 Chirag Gupta et al. “ProtoNN: Compressed and accurate KNN for resource-scarce
devices”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1331-
1340.

38 Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding”. In: arXiv
preprint arXiv:1510.00149 (2015).

39 Song Han et al. “Learning both weights and connections for efficient neural network”.
In: Advances in Neural Information Processing Systems 28 (2015).

40 Song Han et al. “EIE: Efficient inference engine on compressed deep neural network”.
In: ACM SIGARCH Computer Architecture News 44. 3 (2016), pp. 243-254.

41 Song Han et al. “ESE: Efficient speech recognition engine with sparse LSTM on
FPGA”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2017, pp. 75-84.

42 Cong Hao and Deming Chen. “Software/hardware co-design for multi-modal multi-
task learning in autonomous systems”. In: 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE. 2021, pp. 1-5.

43 Jason Hill et al. “System architecture directions for networked sensors”. In: ACM
SIGPLAN Notices 35. 11 (2000), pp. 93-104.

44 Sepp Hochreiter and Jurgen Schmidhuber. “Long short-term memory”. In: Neural
Computation 9. 8 (1997), pp. 1735-1780.

45 Zejiang Hou and Sun-Yuan Kung. “Multi-dimensional model compression of vision
transformer”. In: 2022 IEEE International Conference on Multimedia and Expo (ICME).


https://github.com/google/XNNPACK
https://cloud.google.com/edge-tpu
https://cloud.google.com/kubernetes-%3Cp%3Eengine?%3Cp%3Ehl%3Cp%3E=en

2022, pp. 01-06. DOI: 10.1109/ICMEb52920. 2022.9859786.

46 Andrew G Howard et al. “MobileNets: Efficient convolutional neural networks for
mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

47 Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

48 Intel. OpenVINO Toolkit Overview.
https://www.intel.com/content/www/us/en/developer/tools/openvino-
toolkit/overview.html. Accessed: 2024-07-10. 2024.

49 International Electrotechnical Commission. Edge Intelligence.
https://www.iec.ch/basecamp/edge-intelligence. Accessed: 2024-05-27. 2024.

50 Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International Conference on Machine
Learning. PMLR. 2015, pp. 448-456.

51 iRobot Corporation. iRobot: Robot Vacuums and Mops. https://www.irobot.com/.
Accessed: 2024-01-20. 2024.

52 Sumaiya et al. “Enhancing real-time inference performance for time-critical software-
defined vehicles”. In: 2024 IEEE International Conference on Mobility, Operations,
Services and Technologies (MOST). IEEE. 2024, pp. 101-113.

53 Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. “Flattened convolutional
neural networks for feedforward acceleration”. In: arXiv preprint arXiv:1412.5474
(2014).

54 Norman P Jouppi et al. “In-datacenter performance analysis of a tensor processing
unit”. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture. 2017, pp. 1-12.

55 Whui Kim, Woo-Sung Jung, and Hyun Kyun Choi. “Lightweight driver monitoring
system based on multi-task mobilenets”. In: Sensors 19. 14 (2019), p. 3200.

56 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification with
deep convolutional neural networks”. In: Advances in Neural Information Processing
Systems 25 (2012).

57 Ashish Kumar, Saurabh Goyal, and Manik Varma. “Resource-efficient machine
learning in 2 KB RAM for the Internet of Things”. In: International Conference on
Machine Learning. PMLR. 2017, pp. 1935-1944.

58 Aditya Kusupati et al. “FastGRNN: A fast, accurate, stable and tiny kilobyte sized
gated recurrent neural network”. In: Advances in Neural Information Processing
Systems 31 (2018).

59 Andrey Kuzmin et al. “Pruning vs quantization: Which is better?” In: Advances in
Neural Information Processing Systems 36 (2024).

60 Philip Levis et al. “TinyOS: An operating system for sensor networks”. In: Ambient
Intelligence (2005), pp. 115-148.

61 Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint
arXiv:1608.08710 (2016).


https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.iec.ch/basecamp/edge-intelligence
https://www.irobot.com/

62 Yanjing Li et al. “Q-ViT: Accurate and fully quantized low-bit vision transformer”. In:
Advances in Neural Information Processing Systems 35 (2022), pp. 34451-34463.

63 Zhengang Li et al. “Auto-ViT-Acc: An FPGA-aware automatic acceleration framework
for vision transformer with mixed-scheme quantization”. In: 2022 32nd International
Conference on Field-Programmable Logic and Applications (FPL). IEEE. 2022, pp. 109-
116.

64 Yunge Li, Shaibal Saha, and Lanyu Xu. “The architectural implications of multi-modal
detection models for autonomous driving systems”. In: 2024 IEEE International
Conference on Mobility, Operations, Services and Technologies (MOST). 2024, pp. 218-
228. DOI: 10.1109/MOST60774.2024.00030.

65 Ji Lin et al. “AWQ: Activation-aware weight quantization for on-device LLM
compression and acceleration”. In: Proceedings of Machine Learning and Systems 6
(2024), pp. 87-100.

66 Sidi Lu and Weisong Shi. “The emergence of vehicle computing”. In: IEEE Internet
Computing 25. 3 (2021), pp. 18-22.

67 Sidi Lu and Weisong Shi. “Vehicle computing: Vision and challenges”. In: Journal of
Information and Intelligence 1. 1 (2023), pp. 23-35.

68 Sidi Lu, Yongtao Yao, and Weisong Shi. “Collaborative learning on the edges: A case
study on connected vehicles”. In: 2nd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 19). 2019.

69 Sidi Lu, Yongtao Yao, and Weisong Shi. “CLONE: Collaborative learning on the
edges”. In: IEEE Internet of Things Journal 8. 13 (2020), pp. 10222-10236.

70 Sidi Lu et al. “SafeCampus: Multimodal-based campus-wide pandemic forecasting”. In:
IEEE Internet Computing 26. 1 (2021), pp. 60-67.

71 Sidi Lu et al. “A comparison of end-to-end architectures for connected vehicles”. In:
2022 5th International Conference on Connected and Autonomous Driving
(MetroCAD). IEEE. 2022, pp. 72-80.

72 Sidi Lu et al. “EdgeWare: Toward extensible and flexible middleware for connected
vehicle services”. In: CCF Transactions on High Performance Computing 4. 3 (2022),
pp. 339-356.

73 Ping Luo et al. “Face model compression by distilling knowledge from neurons”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016.

74 Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. “ThiNet: A filter level pruning method for
deep neural network compression”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 5058-5066.

75 Yichen Luo et al. “Impact of raindrops on camera-based detection in software-defined
vehicles”. In: 2024 IEEE International Conference on Mobility, Operations, Services
and Technologies (MOST). IEEE. 2024, pp. 193-205.

76 Steven Macenski et al. “Robot operating system 2: Design, architecture, and uses in
the wild”. In: Science Robotics 7. 66 (2022), eabm6074.

77 Dukhan Marat, W Yiming, and L. Hao. QNNPACK: Open source library for optimized
mobile deep learning. 2018.



78 Sachin Mehta and Mohammad Rastegari. “MobileViT: Light-weight, general-purpose,
and mobile-friendly vision transformer”. In: arXiv preprint arXiv:2110.02178 (2021).

79 Sachin Mehta and Mohammad Rastegari. “Separable self-attention for mobile vision
transformers”. In: arXiv preprint arXiv:2206.02680 (2022).

80 Dirk Merkel. “Docker: Lightweight linux containers for consistent development and
deployment”. In: Linux Journal 2014. 239 (2014), p. 2.

81 Microsoft. Azure IoT Edge. https://azure.microsoft.com/en-us/products/iot-edge.
Accessed: 2024-07-10. 2024.

82 Microsoft Azure. Azure Sphere. https://azure.microsoft.com/en-us/products/azure-
sphere. Accessed: 2024-07-09. 2024.

83 Dharmendra S Modha. “Introducing a brain-inspired computer”. In: Published online

at http://www.research.ibm.com/articles/brain-chip.shtml (2017).

84 Pavlo Molchanov et al. “Importance estimation for neural network pruning”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 11264-11272.

85 NVIDIA Corporation. NVIDIA Jetson Orin. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-orin/. Accessed: 2024-05-20. 2024.

86 NVIDIA Corporation. TensorRT. https://developer.nvidia.com/tensorrt. Accessed:
2024-05-20. 2024.

87 NVIDIA Corporation. Jetson Xavier Series. https://www.nvidia.com/en-

us/autonomous-machines/embedded-systems/jetson-xavier-series/. Accessed: 2024-05-
20. 2024.

88 Cristina Olaverri-Monreal. “Autonomous vehicles and smart mobility related
technologies”. In: Infocommunications Journal 8. 2 (2016), pp. 17-24.

89 ONNX Runtime Developers. ONNX Runtime. https://onnxruntime.ai/. 2021.

90 George Plastiras et al. “Edge intelligence: Challenges and opportunities of near-sensor
machine learning applications”. In: 2018 IEEE 29th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP). IEEE. 2018, pp. 1-
7.

91 PX4. PX4 Autopilot. https://px4.io/. Accessed: 2024-01-10. 2024.

92 Morgan Quigley et al. “ROS: An open-source Robot Operating System”. In: ICRA
Workshop on Open Source Software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

93 Esteban Real et al. “Regularized evolution for image classifier architecture search”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp.
4780-4789.

94 Red Hat. What is rkt? https://www.redhat.com/en/topics/containers/what-is-rkt.
Accessed: 2024-08-14. 2024.

95 ROBOTIS. ROBOTIS Official Website. http://www.robotis.us. Accessed: 2024-01-20.
2024.

96 Tara N Sainath et al. “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets”. In: 2013 IEEE International Conference on


https://azure.microsoft.com/en-us/products/iot-edge
https://azure.microsoft.com/en-us/products/azure-sphere
http://www.research.ibm.com/articles/brain-chip.shtml
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/tensorrt
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://onnxruntime.ai/
https://px4.io/
https://www.redhat.com/en/topics/containers/what-is-rkt
http://www.robotis.us/

Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6655-6659.

97 Bharat Bhusan Sau and Vineeth N Balasubramanian. “Deep model compression:
Distilling knowledge from noisy teachers”. In: arXiv preprint arXiv:1610.09650 (2016).

98 Sheng Shen et al. “Q-BERT: Hessian based ultra low precision quantization of BERT”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 34. 05 (2020), pp.
8815-8821.

99 Weisong Shi et al. “Edge computing: Vision and challenges”. In: IEEE Internet of
Things Journal 3. 5 (2016), pp. 637-646.

100 Laurent Sifre and Stéphane Mallat. “Rigid-motion scattering for texture
classification”. In: arXiv preprint arXiv:1403.1687 (2014).

101 Shangquan Sun et al. “Logit standardization in knowledge distillation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2024, pp. 15731-15740.

102 Chen Tang et al. “Mixed-precision neural network quantization via learned layer-
wise importance”. In: European Conference on Computer Vision. Springer. 2022, pp.
259-275.

103 Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. “Distributed deep
neural networks over the cloud, the edge and end devices”. In: 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE. 2017, pp.
328-339.

104 TensorFlow Authors. TensorFlow Lite. https://www.tensorflow.org/lite. Accessed:
2024-05-21. 2024.

105 Shikhar Tuli et al. “CODEBench: A neural architecture and hardware accelerator co-
design framework”. In: ACM Transactions on Embedded Computing Systems 22. 3
(2023), pp. 1-30.

106 Yaman Umuroglu et al. “FINN: A framework for fast, scalable binarized neural
network inference”. In: Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2017, pp. 65-74.

107 Min Wang, Baoyuan Liu, and Hassan Foroosh. “Factorized convolutional neural
networks”. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops. 2017, pp. 545-553.

108 Zixiao Wang et al. “Sparse-YOLO: Hardware/software co-design of an FPGA
accelerator for YOLOv2”. In: IEEE Access 8 (2020), pp. 116569-116585.

109 Teng Wang et al. “ViA: A novel vision-transformer accelerator based on FPGA”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.
11 (2022), pp. 4088-4099.

110 Paul ] Werbos. “Backpropagation through time: What it does and how to do it”. In:
Proceedings of the IEEE 78. 10 (1990), pp. 1550-1560.

111 Guangxuan Xiao et al. “SmoothQuant: Accurate and efficient post-training
quantization for large language models”. In: International Conference on Machine
Learning. PMLR. 2023, pp. 38087-38099.


https://www.tensorflow.org/lite

112 Xilinx Inc. PYNQ (Python Productivity for Zynq). http://www.pyng.io. Accessed:
2024-08-21. 2024.

113 Shixing Yu et al. “Unified visual transformer compression”. In: arXiv preprint
arXiv:2203.08243 (2022).

114 Qingyang Zhang et al. “OpenVDAP: An open vehicular data analytics platform for
CAVs”. In: 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2018, pp. 1310-1320.

115 Shaojun Zhang et al. “Enabling edge intelligence for activity recognition in smart
homes”. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS). IEEE. 2018, pp. 228-236.

116 Xingzhou Zhang, Yifan Wang, and Weisong Shi. “pCAMP: Performance comparison
of machine learning packages on the edges”. In: USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 18). 2018.

117 Xingzhou Zhang et al. “OpenEIl: An open framework for edge intelligence”. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE.
2019, pp. 1840-1851.

118 Minxuan Zhou et al. “TransPIM: A memory-based acceleration via software-hardware
co-design for transformer”. In: 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE. 2022, pp. 1071-1085.

119 Yuxuan Zhou et al. “SP-ViT: Learning 2D spatial priors for vision transformers”. In:
arXiv preprint arXiv:2206.07662 (2022).

120 Barret Zoph et al. “Learning transferable architectures for scalable image
recognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 8697-8710.

Note

* This chapter is contributed by Shaibal Saha, Qiren Wang, Lichen Xia, and Yongtao
Yao.


http://www.pynq.io/

5
Challenges and Solutions in Edge

Computingf

While implementing the potential applications of edge
computing, it is essential to address the challenging key
technical difficulties inherent in these applications. To
realize the vision of edge computing, researchers and
developers in computer systems, networks, and application
services need to engage in close collaboration and
communication. This chapter summarizes several critical
issues that urgently need to be addressed in edge
computing research. It proposes some solutions and
research directions worth further exploration based on
existing research results.

5.1 Programmability and Data
Management

The efficiency and flexibility of edge systems are highly
related to programmability and data management. This
section explores the challenges of making edge platforms
programmable, focusing on the complexities of automatic
program partitioning, naming conventions, and data
abstraction. Solving these issues enables develop systems
that are not only easier to program but also more adept at
managing the vast amount of data generated at the edge.

5.1.1 Programmability

In the cloud computing model, users write applications and
deploy them to the cloud. Cloud service providers maintain
the cloud servers, and users typically know little or nothing



about the operation of these programs. This transparency
of infrastructure is a key advantage of application
development in the cloud computing model. User programs
are usually written and compiled for the target platform
and run on cloud servers.

However, in the edge computing model, part or all of the
computing tasks are migrated from the cloud to edge
nodes. Since edge nodes are mostly heterogeneous
platforms and each node's runtime environment may differ,
deploying user applications in the edge computing model
presents significant challenges for programmers.
Traditional programming methods such as MapReduce [10]
and Spark [53] are unsuitable, necessitating research into
new programming methods based on edge computing.

To achieve programmability in edge computing, Zhang et
al. proposed a programming model based on hybrid cloud
and edge computing, known as the Firework model [55]. In
the era of the Internet of Everything, this model addresses
the need for distributed sharing and processing of big data
when data production and consumption are both migrated
to edge devices. It also enables the functionality of
computation flows in edge computing. Computation flow
refers to the series of computations that can be performed
on data along its transmission path by edge nodes, allowing
data to be incrementally processed, reducing the amount of
data transmitted.

As shown in Figure 5.1, the Firework model consists of two
types of nodes: Firework Model Managers and Firework
Model Nodes. It defines datasets and functions through a
virtual shared data view, integrating geographically
distributed data sources. Data stakeholders (Firework
Model Nodes) provide a set of predefined function
interfaces for end-users to access. When using the
Firework system, users can focus more on business



implementation, while the communication, function
scheduling, and composition can be managed using the
programming interfaces provided by Firework. By
deploying and configuring Firework Model Nodes and their
mutual functions, the system achieves distributed sharing
and processing of big data and supports the functionality of
computation flows.

Firework.Node

Datasets

Functions

Databases

Apache Kafka

Firework.Node Firework.Node
Datasets | Functions Firework. Datasets | Functions
manager
Apache spark Smart phones
Firework.Node Firework.Node
Datasets | Functions Datasets | Functions

IoT gateway

Figure 5.1 Edge computing paradigm.

The Firework model extends the visualization boundary of
data, proposing a new programming paradigm for
distributed data processing in collaborative edge
environments. Each participant in the Firework model can
achieve data processing on local devices and the
integration of cloud and edge computing resources.
Additionally, it is important to note that the collaborative
issues in the edge computing model (such as




synchronization, data/state migration, etc.) are among the
pressing problems in programmability that need to be
addressed.

Satyanarayanan and coworker proposed the OpenStack++
model [18], which is primarily applied in the cloudlet
architecture. It provides a programming model for
application developers tailored for mobile environments.
Amento et al. proposed the FocusStack model [1], which
supports the deployment of diverse and complex
applications on various potential IoT edge devices. Edge
devices are constrained in terms of computing, power
consumption, and connectivity, and they are highly mobile.
FocusStack first identifies edge devices with sufficient
resources, then deploys and runs applications on these
devices. This model allows developers to focus solely on
program design while the FocusStack model determines
the appropriate edge devices and tracks their status. Sajjad
et al. proposed the SpanEdge model [41], which unifies
cloud central nodes and near-edge central nodes, reducing
network latency caused by wide-area network connections.
It provides a programming environment where developers
can focus on developing stream processing applications,
specifying which parts of the application need to run near
the data source without worrying about the data source
and its geographical distribution.

5.1.2 Automatic Program Partitioning

In the edge computing environment, as the computational
capability of edge nodes improves, migrating applications
from cloud centers to edge nodes becomes a significant
challenge. Distributing originally standalone applications
across different network edge nodes is crucial for the
feasibility and efficiency of application design in edge
computing systems. This process directly impacts the
executability and efficiency of edge computing applications.



Designing and implementing partitioning techniques for
applications to ensure the reasonable allocation of
application components among cloud-edge and edge-edge
heterogeneous nodes is essential for achieving high
performance and reliability in edge computing
environments.

Program partitioning in edge computing environments
needs to consider various state information, such as
resources, energy consumption, and response latency of
edge nodes, to decompose applications into multiple
components while preserving the original application's
semantics. These components are then placed onto
different nodes. The existing partitioning methods mainly
include static and dynamic partitioning: static program
partitioning is completed during the compilation process,
commonly seen in message passing interface (MPI)
programming and heterogeneous multicore programming
based on general-purpose graphics processing unit
(GPGPU) computing cards; dynamic program partitioning
is primarily performed during the runtime.

The edge computing environment shares certain
similarities with distributed environments, allowing
programs to be designed, implemented, and debugged at
the central node to ensure they can run on edge nodes.
However, the partitioned programs need to be distributed
across various edge nodes. For homogeneous edge nodes,
this is similar to program partitioning in a distributed
system environment. Nevertheless, edge computing
environments often have heterogeneous nodes, making
traditional partitioning methods insufficient for edge
computing needs. These traditional methods do not
consider the characteristics of the edge computing
environment, such as resource heterogeneity, varying data
sources, and edge node mobility. Therefore, program
partitioning in edge computing environments, in addition to



static and dynamic partitioning, needs to address the
specificities of cloud-edge and edge-edge partitioning.

The concept of the program dependence graph (PDG) [12]
can be leveraged, retaining the original program
component nodes while adding features like heterogeneous
resource availability weights, location distance parameters,
and communication costs between edge nodes in the edge
computing environment. Furthermore, in addition to the
original dependency relations (such as data dependency
and control dependency), the PDG can incorporate
dependencies specific to the edge computing environment,
including resource availability dependency, location
mobility dependency, and response time dependency.
These dependencies can be utilized in the dependency
analysis process, applicable not only in the static
compilation phase and dynamic runtime phase but also in
the cloud-edge and edge-edge program partitioning. This
ensures that applications can be reasonably allocated to
different edge nodes while guaranteeing the reliability and
high performance of the execution of different components
on the edge nodes.

5.1.3 Naming Conventions

A significant assumption in the edge computing model is
the enormous number of edge devices. At the edge nodes,
numerous applications operate, each with its own
framework for service delivery. As with any computing
system, the naming scheme in edge computing holds
significant importance for programming, addressing,
device identification, and data communication. Yet, an
efficient and standardized naming mechanism tailored for
the edge computing paradigm has yet to be established.
Edge practitioners often must familiarize themselves with
diverse communication and network protocols to interact
with the heterogeneous devices within their systems. The



naming scheme for edge computing must accommodate
device mobility, highly dynamic network topologies, privacy
and security concerns, and scalability to manage the
immense volume of unreliable devices effectively.

Traditional naming mechanisms like domain name system
(DNS) and uniform resource identifiers perform well in
current networks. However, they often lack the flexibility
needed to support dynamic edge networks, where many
devices may be highly mobile and resource-constrained.
Additionally, IP-based naming schemes can be too
cumbersome for resource-constrained edge devices due to
their complexity and overhead.

New naming mechanisms such as Named Data Networking
(NDN) [54] and MobilityFirst [40] have been proposed for
edge computing. NDN offers a hierarchically structured
naming scheme suited for content-centric networks,
enhancing scalability and human-friendly service
management at the edge. However, integrating NDN with
other protocols like Bluetooth or ZigBee requires additional
proxies and raises security concerns regarding hardware
information isolation.

MobilityFirst addresses mobility support by separating
names from network addresses, which is beneficial for
highly mobile edge environments. However, its
requirement for a globally unique identifier (GUID) for
naming may not be practical for fixed-edge environments
like home networks. Moreover, GUIDs are not user-friendly
for service management.

For smaller, fixed-edge environments such as homes, a
solution could involve the edge operating system (edgeOS)
assigning a network address to each device based on a
unique human-friendly name. As shown in Figure 5.2, this
approach includes information about location, role, and
data description in the name (e.qg.,



“kitchen.oven2.temperature3”). This human-friendly
naming convention simplifies service management, device
diagnosis, and component replacement. Users and service
providers can easily understand notifications from the
edgeOS, facilitating quick actions without the need for
error codes or network reconfiguration. Furthermore, this
naming approach enhances programmability for service
providers while safeguarding hardware information, thus
improving data privacy and security. It allows the mapping
of human-friendly names to unique identifiers used for
edgeOS management and network addresses (e.g., IP
addresses or MAC addresses) for supporting various
communication protocols like Bluetooth, ZigBee, or WiFi.

Addressing highly dynamic edge environments at a city-
wide scale remains an ongoing challenge, requiring further
investigation and community collaboration.
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Figure 5.2 The naming mechanism for the edge operating
system (edgeOS).

Source: Shi et al. [43]/IEEE.



5.1.4 Data Abstraction

Various applications running on the edgeOS interact with
the service management layer through wireless
communication, relying on position indicators. Data
abstraction has been extensively studied in wireless sensor
networks and cloud computing paradigms. However, edge
computing introduces new challenges due to the vast
number of 10T devices generating data, such as in a smart
home environment. Here, nearly all devices continuously
report data to the edgeOS, scattered throughout the home.
For instance, a thermometer might report temperature
every minute, while a security camera records video sent to
the gateway, often without immediate consumption before
being replaced by newer footage.

Besides, applications in edge computing systems use data
or provide services through service management layer
APIs. Compared to cloud computing, data abstraction in
edge computing is more challenging. In a smart home,
intelligent devices, as data producers, send data to the
edge computing system. However, there are fewer devices
deployed around the home, and most network edge devices
periodically send sensed data to a gateway. For instance, a
temperature sensor sends temperature data to the gateway
every minute, though it is used infrequently. Based on this,
Shi et al. [43] proposed reducing human involvement in
edge computing by having edge nodes process the data and
interact with users proactively. In this scenario, the
gateway layer preprocesses the data (e.g., denoising, event
detection, and privacy protection) before sending it to the
upper layers of the system as source data for application
services. This process faces the following three challenges:

- Diversity of data formats from different devices:
Due to considerations of data privacy and security,
source data is transparent to the tasks running on the



gateway. These tasks should extract the information
needed for processing from an integrated data table.
Shi et al. [43] proposed a table structure containing
numbered, named, timestamped, and data fields,
allowing edge device data to be stored in this table.
However, this hides the details of the sensed data,
affecting its usage.

« Uncertainty in the degree of data abstraction: If
data abstraction filters out too much source data, some
applications or services may fail due to insufficient
information. Conversely, retaining a large amount of
source data poses a challenge for system developers in
terms of data storage and management. Additionally,
the data sent by edge devices is often unreliable.
Extracting useful information from unreliable sources
remains a technical challenge.

- Applicability of data abstraction: Edge devices
collect data and provide it for application use,
completing specific services. These applications should
have read and write permissions for devices to cater to
user-specific needs. The data abstraction layer
combines data representation and operations,
providing a common interaction interface for devices
connected to the edge computing system. Due to the
heterogeneity of edge devices, data representation and
operations vary, creating a barrier to general data
abstraction.

Given the practical requirements of real-world applications,
researchers aim to reduce human intervention in edge
computing by enabling edge nodes to preprocess data and
engage proactively with users. At the gateway level,
preprocessing tasks encompass noise reduction, event
detection, and privacy protection before transmitting
processed data to upper layers for service delivery.



However, several challenges accompany this strategy.
Firstly, data from diverse devices arrives in varying formats
(refer to Figure 5.3). To uphold privacy and security,
gateway applications should access unified data tables
without exposure to raw data specifics, using a
standardized format (e.g., 0000, 12:34:56 PM, 01 January
2016, kitchen.oven2.temperature3, 78). Nevertheless,
abstracting data at this level risks reducing its practical

utility.
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Figure 5.3 Data abstraction in edge computing scenarios.
Source: Shi et al. [43]/IEEE.

Secondly, determining the appropriate level of data
abstraction is complex. Filtering too much raw data may
limit application learning capabilities, whereas storing vast
amounts of raw data poses storage challenges. Moreover,
data reliability concerns persist due to sensor inaccuracies,
hazardous environments, and unreliable wireless
connections, posing ongoing challenges for IoT developers
seeking to extract useful insights from potentially
unreliable data sources.

Another critical aspect of data abstraction involves
enabling applications to perform operations on connected
devices. Data abstraction layers serve as public interfaces



for these operations, accommodating the heterogeneous
nature of connected devices with diverse data
representations and operational capabilities, thereby
complicating universal data abstraction efforts.

5.2 Resource Allocation and
Optimization

Efficient resource allocation and optimization are critical to
deploying edge computing systems successfully. With the
ever-increasing demand for low-latency processing and
real-time data handling, scheduling strategies, data
offloading, and load balancing play a pivotal role. This
section delves into these optimization challenges,
highlighting the need for intelligent resource management
to ensure that edge computing systems meet performance
expectations while remaining scalable and adaptable.

5.2.1 Scheduling Strategies

The scheduling strategies in edge computing aim to
optimize resource utilization, reduce response time,
minimize energy consumption, and enhance the overall
performance of task processing in the edge computing
environment. Compared to traditional distributed systems,
the scheduling strategies of edge computing systems share
some similarities, such as the distributed handling of
computational tasks and resources across various nodes.
However, there are notable differences, such as the
heterogeneity of computational resources, which is more
akin to cloud computing systems. Unlike cloud computing,
edge computing scheduling strategies are closely tied to
their specific computing environments, primarily due to the
resource-constrained nature of edge computing systems.
Additionally, these strategies must consider the overhead



caused by the mobility of users, which is different from the
scheduling strategies in cloud computing systems.

One of the significant challenges in edge computing is how
to schedule computational resources effectively. The
scheduling strategy in edge computing is related to
resources, ensuring that the resources used by a specific
application during its execution are efficiently managed.
Given the heterogeneity of data, computation, storage, and
network resources in edge computing task scheduling, it is
necessary to design heterogeneous resource scheduling
strategies tailored to different application instances.
Moreover, the diversity of applications requires scheduling
strategies that can support various types of applications,
ensuring their normal operation. These strategies should
maximize the utilization of limited computational resources
to enhance the executability and efficiency of applications
in the edge computing environment while minimizing
resource usage. For edge computing resource providers or
service providers, the scheduling strategy should also
maximize resource benefits. Thus, real-time monitoring and
tracking of application execution and resource changes are
needed to achieve dynamic scheduling of applications and
the resources required for their execution.

Existing research indicates that scheduling strategies in
edge computing environments can be implemented using
graph theory methods [3]. Specifically, each application is
represented by a graph structure where each node
represents a component of the application, and the edges
between nodes represent communication between them.
Physical resources can also be represented by a graph,
with nodes representing computational resources (such as
servers) and edges representing the relationships between
them. This approach transforms the resource scheduling
problem into a mapping relationship between resource
nodes and applications. In terms of resource scheduling,



parts of user applications can run on the central cloud or
on resources at the network edge. In edge computing
environments, resource availability, network conditions,
and user locations are dynamically changing. Thus, parts of
an application may need to migrate from one edge
node/central cloud server to another. An optimal
scheduling strategy for an application must consider
network status and user mobility.

Professor Qun Li's research team [52] has focused on the
issue of edge computing response latency, providing a
solution for task scheduling between edge nodes. Their
approach primarily addresses the state of task execution
between edge nodes using three strategies: shortest
transmission time first, shortest queue length first, and
shortest scheduling delay first. These strategies are all
related to delay time, leveraging one of the advantages of
edge computing—reducing data transmission latency.
Designing and implementing a scheduling strategy that
effectively reduces task execution delay at edge nodes is
one of the challenges encountered in the research on edge
computing scheduling strategies.

5.2.2 Data Offloading and Load Balancing

An edge computing-based system is inherently a distributed
system [37, 39], leveraging diverse data sources and
distributed computational capabilities. When individual
edge devices or servers reach their processing limits, task
partitioning and data offloading becomes essential.
Effective load balancing becomes more critical as device
performance decreases, especially in scenarios like vehicle-
edge collaboration [30] (as shown in Figure 5.4). This
involves partitioning tasks and data across multiple devices
or servers, and aggregating results to achieve overall
system load balancing. Load balancing and data offloading
optimize computing and storage resources across layers,



preventing single-resource overload, reducing latency, and
enhancing the efficiency, reliability, availability, and
scalability of the edge computing-based system
redundantly. However, challenges persist in data offloading
and load balancing in edge computing that require ongoing
research and improvement.
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Figure 5.4 Offloading framework in edge computing
scenarios for vehicle-edge collaboration.

Source: Luo et al. [30]/IEEE.

5.2.2.1 Data Offloading

In conventional edge computing systems, data offloading
typically focuses on large servers, with individual devices
often overlooked. Conversely, in edge computing-based
edge computing systems, every device capable of
processing data necessitates consideration for data
offloading, significantly increasing the complexity of this
issue. Moreover, due to the constrained computing and
storage capacities of edge devices, frequent data offloading
is required to balance the overall system load. This results



in high throughput in the edge network, intensive
bandwidth usage, and potential delays in task execution. To
address these challenges, tailored data offloading schemes
must be devised based on specific requirements. Generally,
depending on offloading needs and application contexts,
two modes of data offloading can be employed: full
offloading and partial offloading.

(i) Full Data Offloading: When considering full
offloading, factors such as time delay and energy
consumption play crucial roles. If devices have
sufficient energy and there is a stringent delay
requirement, the offloading scheme should prioritize
minimizing delay. Optimal solutions involve leveraging
task queue information, resource utilization of edge
nodes and servers, and routing status to determine the
most efficient full data offloading strategy [27].
Additionally, optimizing energy consumption through
an optimization framework while meeting delay
constraints is paramount [24].

(ii) Partial Data Offloading: Unlike full offloading
which focuses on time delay and energy consumption,
partial offloading involves dividing data from a task into
blocks, with only selected blocks being offloaded [7].
Decisions on which blocks to offload depend on various
parameters such as total data volume, device resource
utilization, channel conditions, and energy consumption
[33]. These parameters are carefully considered to
jointly optimize the allocation of communication and
computing resources. Despite advancements, current
offloading strategies in edge devices require further
adaptation and optimization to align with the specific
characteristics of industrial environments.



5.2.2.2 Load Balancing

When designing a data offloading scheme, considerations
typically revolve around minimizing both time delay and
energy consumption. However, such schemes may
inadvertently overload certain devices, necessitating
effective load-balancing strategies [31]. The primary goal
of load balancing is to ensure equitable distribution of
workload across edge nodes and maintain stable
communication links, thereby optimizing the utilization of
computing and network resources. Given the scale and
frequency of operations in edge systems, it becomes
imperative to enhance existing load-balancing algorithms to
align with the unique characteristics of these
environments.

In edge computing-based systems, task and load data are
collected from far-edge, mid-edge, and near-edge devices
and servers, organized hierarchically, and integrated with
artificial intelligence (AI) to develop load balancing
mechanisms tailored to each layer. Furthermore, SDN
(software-defined networking) can be leveraged to
orchestrate load balancing across the entire edge network,
simplifying scheduling and routing complexities.

5.2.3 Optimization Metrics

In the edge computing model, different layers have varying
computational capabilities, making load distribution a
critical issue. It is necessary to determine which layer
should handle specific loads or how loads should be
distributed across each layer. Various allocation strategies
are typically employed, such as evenly distributing loads
across all layers according to the number of layers, or
assigning the maximum load to a single layer. In extreme
cases, all tasks might be allocated to either the edge or the
cloud. Several optimization metrics should be considered



when selecting the optimal load distribution strategy,
including latency, bandwidth, energy consumption, and
cost [43].

5.2.3.1 Latency

Latency is one of the most important metrics for evaluating
performance [8, 11], especially in interactive applications.
Cloud servers offer high computational power, completing
complex tasks like image and speech recognition in a short
time. However, latency is influenced not only by
computation time but also by transmission time. Long
delays in wide-area networks can significantly impact real-
time or interaction-intensive applications [6]. To reduce
latency, loads should be executed at the nearest layer with
computational capability. For instance, in a smart city,
users can preprocess photos on their local devices before
sending information about a missing person to the cloud,
avoiding the need to upload all photos to the cloud. The
closest physical layer might not always be the optimal
choice. It is necessary to avoid unnecessary waiting times
by considering resource usage to find a reasonable
optimization layer. For example, if a user is playing a game
that occupies a lot of the phone's computational resources,
uploading photos through the nearest gateway would be
more efficient.

As depicted in Figure 5.5, Xu et al. [48] proposed
ChatCache, a scalable edge system that incorporates a
hierarchical cache design to serve both single and multiple
users. On most evaluated platforms, ChatCache
significantly reduces user-perceived latency by over 91.7%
for voice requests and more than 81.6% for text requests.
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Figure 5.5 The design of ChatCache.
Source: Xu et al. [48]/IEEE.

5.2.3.2 Bandwidth

From a latency perspective, high bandwidth can reduce
transmission delays, especially for large data transfers [9].
For short-distance transmissions, future research can
explore high-bandwidth wireless access technologies to
send data to the edge. If the edge can handle tasks, it
significantly improves latency and saves transmission
bandwidth between the edge and the cloud. In smart
homes, gateways can handle most data through WiFi or
other high-speed transmission methods. Short transmission
paths also improve data transfer reliability. If edge devices
cannot meet computational requirements, they can
preprocess source data to reduce the upload volume
significantly. In a smart-city scenario, local preprocessing
of photos before uploading can save bandwidth and reduce
user data transmission. Globally, the saved bandwidth can
be used for other edge user data uploads and downloads.
When using high bandwidth in edge computing, it is
essential to evaluate the appropriate speed configuration
for the edge. Additionally, to avoid competition and latency,
the computational capacity and bandwidth at each layer
must be considered for load distribution.



5.2.3.3 Energy Consumption

The battery is the most constrained resource for edge
devices. For terminal devices, offloading tasks to the edge
layer can save energy [42]. For a specific load, determining
whether migrating the entire or part of the load to the edge
layer is energy-efficient requires balancing computation
and transmission energy consumption. Generally, it is
necessary to determine whether the load is computation-
intensive and how many resources are required to support
local execution. Besides network signal strength [21, 40]
found that data size and available bandwidth also affect
transmission energy consumption. When transmission
energy consumption exceeds local computation energy
consumption, edge computing is more suitable. If the user
focuses on the entire edge computing process rather than
the terminal, the total energy consumption should equal
the sum of each layer's energy consumption. Like the
endpoint layer, other layers' energy consumption equals
the sum of local and transmission energy consumption.
Workload distribution strategies need to optimize this
balance. When the local data center layer is busy, loads
need to be uploaded to higher layers. Multilevel data
transmission incurs extra overhead, increasing energy
consumption compared to executing tasks at the terminal.

5.2.3.4 Cost

From the perspective of service providers (e.g., YouTube,
Amazon, and Taobao), edge computing can ensure lower
latency and energy consumption, increasing throughput,
improving user experience, and ultimately leading to higher
profits. For example, based on residents' preferences, a
video could be played at the building layer edge, while the
city layer edge handles more complex tasks to increase
overall throughput. Service providers invest in building and
maintaining each layer of devices. To fully utilize local data



at each layer, providers can charge users based on data
location. Developing new cost models that ensure service
provider profits and user affordability is an urgent issue.

Thus, load distribution needs to consider the interrelation
between these metrics. For example, due to energy
constraints, a workload might need to be completed at the
city data center layer, where energy limitations impact
latency more than at the building service layer.
Optimization metrics should be weighted and prioritized for
different workloads to systematically choose a reasonable
distribution strategy. Additionally, cost analysis should be
conducted during operation, and service providers should
consider the interference between concurrent loads and
resource usage.

5.3 Security, Privacy, and Service
Management

As edge computing continues to expand, security, privacy,
and effective service management have become paramount
concerns. The distributed nature of edge networks
introduces unique vulnerabilities that must be addressed to
protect sensitive data and ensure system integrity. In this
section, the strategies for safeguarding privacy and
security in edge environments will be discussed, as well as
the challenges of managing edge services effectively in a
decentralized infrastructure.

5.3.1 Privacy Protection and Security

Privacy protection and security are critical services
provided by edge computing. For instance, in an Internet of
Things (IoT) system deployed within a home, a significant
amount of private information is captured by sensors.
Providing services while protecting privacy is a challenge.



Shi et al. [43] found that performing computations near the
data source is an effective method for protecting privacy
and data security. The research on privacy protection and
security in edge computing faces the following challenges:

Awareness of Privacy and Security in Society:
Taking WiFi network security as an example, a survey
[12] indicates that among over 400 million homes using
wireless connections, 49% of WiFi networks are
insecure, and 80% of households still use the default
passwords to set up their routers. For public WiFi
hotspots, 89% are insecure. If users do not protect their
personal privacy data, it is easy for others to use
devices like network cameras and health monitors to
spy on personal data.

Dual role of edge devices as data collectors and
owners: Data collected by devices like smartphones is
stored and analyzed by service providers. A better way
to protect privacy is to keep data at the edge and let
users own their data. Data collected by network edge
devices should be stored locally, and users should have
the right to restrict service providers' use of this data.
To protect user privacy, highly sensitive data should be
deleted from edge devices.

Lack of effective tools for data privacy and
security: Network edge devices have limited
resources, and existing data security methods are not
fully applicable to edge computing. The highly dynamic
environment at the network edge also makes it more
vulnerable to attacks. To enhance the protection of
private data, researchers are studying privacy
protection platforms. For example, the Open mHealth
platform developed by Deborah's team [22]
standardizes the processing and storage of health data.



However, future research needs to develop more tools
to handle data in edge computing.

5.3.1.1 Sensor Security

In today's landscape, edge devices like autonomous
vehicles integrate diverse sensors (e.g., cameras, global
navigation satellite system (GNSS), and LiDAR) to perceive
their surroundings. These sensors face direct security
threats, particularly from attacks that manipulate or
obstruct sensor data without compromising the computing
system itself. Attackers exploit vulnerabilities in sensor
operation to interfere, obscure, or falsify data, thereby
disrupting edge device functionality [35].

Cameras serve as fundamental visual sensors in intelligent
and surveillance systems. Modern edge devices often
deploy multiple cameras with various lenses [15, 28].
Camera inputs are pivotal in tasks such as object detection
and tracking. For instance, in autonomous vehicles, a
popular type of edge device, attackers can deceive these
systems by placing counterfeit traffic signals, signs, or
objects (e.g., vehicles and pedestrians), leading to incorrect
decisions [36]. Attackers also employ high-brightness IR
lasers to blind cameras by interfering with infrared
wavelengths, thus compromising their ability to provide
accurate visual data [36, 46].

Edge devices rely on GNSS and inertial navigation systems
(INS) for real-time location updates. GNSS sensors are
susceptible to jamming and spoofing attacks, where
attackers disrupt receiver function using out-of-band or in-
band signals [20]. Furthermore, attackers can deploy GNSS
transmitters near vehicles to falsify location data by
replicating genuine signals [20]. INS sensors, sensitive to
magnetic fields, can be manipulated by powerful magnetic



interference, resulting in erroneous orientation readings
for the targeted edge devices.

LiDAR technology produces 3D environmental data by
measuring distances using laser light pulses. Attackers can
deceive LiDAR sensors using absorbent or reflective
surfaces, causing them to misidentify obstacles in traffic
scenarios [35]. Manipulating the laser pulses can further
distort LiDAR data, leading to inaccuracies in object
position and distance readings. Ultrasonic sensors and
radars, crucial for passive perception and as a final defense
for edge devices, have also been vulnerable to spoofing and
jamming attacks through specialized signal generators and
transmitters [50].

5.3.1.2 Securing Edge Networks and Platforms

Security remains a critical concern in edge computing,
prompting several studies to address security challenges
across various scenarios. Existing literature categorizes
these efforts into two main areas: network security within
edge environments and security measures within the
operational context of edge computing.

Bhardwaj et al. [4] introduced ShadowNet, a framework
that deploys edge functions across distributed
infrastructure to monitor IoT traffic and preemptively
detect IoT-DDoS attacks. Compared to conventional
methods, ShadowNet achieves detection 10 times faster
and mitigates 82% of traffic before it reaches the broader
Internet, thereby reducing overall security risks. Yi et al.
[51] proposed an approach leveraging SDN to enhance
edge network security through improved monitoring,
intrusion detection, and resource access control, offering
valuable insights into mitigating network threats in edge
computing environments.



Ning et al. [34] evaluated various trusted execution
environments (TEEs) like Intel Software Guard Extensions
(SGX), ARM TrustZone, and AMD secure encrypted
virtualization (SEV) on heterogeneous edge platforms.
Their work demonstrates the deployment of TEEs to bolster
security with minimal performance overhead in edge
computing scenarios [34]. Additionally, Li et al. [26]
developed Kernel Level Resource Auditing (KLRA), a tool
tailored for IoT and edge operating systems. KLRA
monitors system behavior at a granular level, promptly
issuing security alerts upon detecting abnormal system
activities, thereby fortifying operating system security on
edge devices.

5.3.1.3 Data Sharing Security

Edge computing offers significant advantages through the
generation of vast real-time data streams from diverse
devices, sites, and infrastructures [39]. Analyzing these
data and making informed, multidimensional business
decisions can substantially enhance industrial production
efficiency [23]. However, traditional edge computing
systems tend to be dominated by vertical, closed
applications that focus solely on maintaining the operations
of individual machines or sites, thereby creating isolated
data silos. Integrating edge computing helps break down
these data silos and enhances data flexibility. Nevertheless,
this integration introduces complexities in securely sharing
data, particularly concerning data security and sharing
among various specialized applications and stakeholders.

Two primary challenges arise in edge data sharing: firstly,
the proliferation of data interfaces increases the risk of
severe consequences such as intrusion and data breaches;
secondly, the performance limitations of edge devices often
hinder the direct implementation of robust security
algorithms. The adoption of blockchain technology within



edge computing introduces both new challenges and
opportunities for securely sharing data [14].

Distributed Edge Data Storage Blockchain-based
distributed data storage is pivotal for enabling secure data
sharing in edge computing. When integrated with
blockchain, data from edge devices becomes tamper-proof,
enhancing security [49]. Recent studies on distributed
storage leveraging technologies like the InterPlanetary File
System (IPFS) demonstrate its effectiveness as a scalable
solution. Storing transaction data in IPFS and including the
IPFS hash value in blockchain blocks significantly reduces
blockchain data volume. Blockchain also opens avenues for
novel business models, such as monetizing edge services.
Despite these advantages, there remains a dearth of
comprehensive research on systematically integrating
blockchain into edge computing to ensure secure data
sharing. Addressing these gaps is crucial for advancing the
field and resolving outstanding research challenges.

Recently, Wang et al. [47] performed a comprehensive
analysis of onboard sensors and controller area network
(CAN) bus data in vehicles, which are a type of edge
device. They introduced a novel mathematical model that
addresses the crucial aspect of data storage requirements
for autonomous vehicles, as illustrated in Figure 5.6.
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Access Control for Edge Data Secure data sharing
hinges on implementing effective access control schemes,
which form the foundation of data security in various
applications, including connected vehicles [25, 49, 506].
While blockchain integration in edge computing systems
can address some data security issues, it introduces
challenges such as public data exposure and significant
privacy concerns due to data visibility to all system nodes.
Therefore, exploring access control solutions that combine
attribute-based access control with blockchain holds
promise for achieving optimal access control effectiveness.
However, the inherent distribution and heterogeneity of
edge computing environments necessitate tailored



approaches for practical implementation within blockchain-
based edge computing systems.

5.3.2 Edge Service Management

In edge computing, service management is crucial for
ensuring a reliable system. Any reliable system typically
exhibits four characteristics: differentiation, extensibility,
isolation, and reliability, collectively referred to as the
Different, Extensibility, Isolation, Reliability (DEIR) model
[43].

5.3.2.1 Differentiation

With the rapid proliferation of IoT deployments, a variety of
services are expected to operate at the edge of networks,
such as Smart Home applications. These services will
exhibit diverse priorities; for instance, critical services like
device diagnostics and failure alarms should be prioritized
over nonessential services. Similarly, health-related
services such as fall detection or heart failure monitoring
should take precedence over entertainment services.

5.3.2.2 Extensibility

Extensibility poses a significant challenge at the edge of
networks. Unlike mobile systems, 10T devices are highly
dynamic. Can newly purchased devices seamlessly
integrate into existing services? Can replacement devices
easily adopt the roles of their predecessors? These
questions necessitate a flexible and extensible design of the
service management layer in edge operating systems
(edgeOS).

5.3.2.3 Isolation

Isolation emerges as another critical issue at the edge of
networks. In mobile operating systems, an application



failure often leads to system crashes and reboots. In
distributed systems, shared resources are typically
managed using synchronization mechanisms like locks or
token rings. However, in smart edgeOS environments,
these challenges become more complex. Multiple
applications may share the same data resources—for
example, light controls. If one application fails, users
should still retain control over their lights without system-
wide disruption. Similarly, if a user removes the sole
application controlling lights, the lights should remain
operational rather than lose connectivity to the edgeOS.
Addressing these challenges may involve deploying a
robust framework for application deployment and
undeployment. Detecting conflicts before application
installation can warn users and prevent potential access
issues. Furthermore, effective isolation must safeguard
user privacy by ensuring that third-party applications
cannot access sensitive personal data (e.g., activity
tracking vs. electricity usage data). Implementing well-
designed access control mechanisms within the service
management layer of the edgeOS is crucial to resolving
these issues effectively.

5.3.2.4 Reliability

Reliability represents a pivotal challenge at the edge of
network environments, encompassing perspectives from
service, system, and data considerations.

« Service perspective: Identifying the precise cause of
service failures at the edge can be inherently complex.
For instance, when an air conditioner malfunctions,
potential causes might range from a severed power
cord to compressor failure or depleted battery in the
temperature controller. Sensor nodes can easily
disconnect due to battery depletion, poor connectivity,



or component wear. Merely maintaining current
services during node disconnections is insufficient;
informing users about nonresponsive components or
preemptively alerting them to potential failures would
significantly enhance user experience. Adaptations
from wireless sensor networks or industrial protocols
like PROFINET [11] offer potential solutions to address
these challenges.

« System perspective: Maintaining the network
topology and ensuring each system component can
transmit status and diagnostic data to the edgeOS are
critical system-level requirements. This capability
facilitates tasks such as failure detection, device
replacement, and data quality assurance throughout
the system.

- Data perspective: Reliability challenges in data
sensing and communication are prevalent at the edge.
Devices may fail due to various factors and can
transmit low-fidelity data under unreliable conditions
such as low battery levels [6]. New [oT communication
protocols have been proposed to support a large
number of sensor nodes and dynamic network
conditions [9], yet their reliability often falls short of
standards set by protocols like Bluetooth or WiFi.
Addressing how systems can maintain reliability
despite unreliable sensing and communication requires
leveraging multiple reference data sources and
historical records, posing an ongoing challenge.

Moreover, the concept of a “function cache” has been
introduced for managing the lifecycle of edge services [29].
This is particularly crucial when multiple services operate
on resource-constrained edge devices, as ensuring that
limited resources can dynamically support the required
services is vital for both automakers and researchers in the



field. Efficient and dynamic management of edge services
thus becomes essential. As illustrated in Figure 5.7, Lu et
al. [29] presented EdgeWare, an open-source, extensible,
and flexible middleware designed to manage edge service
execution. EdgeWare offers four key features: (1) on-
demand model switching, enabling the easy transition and
upgrading of machine learning models, (2) function
consolidation and deduplication to eliminate redundant
copies of recurring functions and maximize the reusability
of vehicle services, (3) the creation of event-driven
applications to reduce workload, and (4) dynamic workflow
customization, allowing for the extension of functionality
through customizable workflows.
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Figure 5.7 An example of function consolidation and
deduplication. Each edge service is encapsulated into a
function module and the function is consolidated for faster
reuse.

Source: Lu et al. [29]/Springer Nature.

5.4 Deployment Strategies and
Integration

Deploying edge computing systems requires careful
consideration of both the hardware and software
components, especially when integrating with vertical
industries. The unique requirements of deploying edge
nodes and Al models on resource-constrained devices pose
significant challenges. This section explores the strategies
for successful deployment, including the selection of
appropriate hardware and software, and discusses how



edge computing can be tailored to meet the specific
demands of various industrial applications.

5.4.1 Edge Nodes Deployment

The rise of edge computing has attracted significant
interest across industries, but the real-world deployment of
edge nodes presents several critical challenges that need to
be addressed. Key issues include how to effectively select
edge nodes and data sources for computation, and how to
ensure the reliability of these edge nodes.

5.4.1.1 Selecting Edge Nodes

In practical applications of edge computing, users have the
flexibility to choose edge nodes along the path from the
cloud to the endpoint to reduce latency and bandwidth
usage. However, because edge nodes vary in computational
power and network bandwidth, the choice of node can
significantly impact computation latency. Existing
infrastructure, such as telecommunications base stations,
can serve as edge nodes. For example, a handheld device
typically connects to the nearest base station before
accessing the backbone network, which can increase
latency. If the device could instead connect directly to an
edge node on the backbone network, latency could be
reduced. Thus, selecting the right edge node to minimize
communication delays and computational overhead is a
critical issue. This also raises questions about how existing
infrastructure can be integrated with edge nodes, whether
edge computing will foster a new ecosystem, and whether
it will bring about revolutionary changes to the current
infrastructure.

5.4.1.2 Choosing Edge Data

With numerous edge nodes generating diverse types of
data, these datasets often overlap, presenting multiple



potential solutions for a given problem. For instance, in
real-time traffic monitoring, vehicle speed can be
calculated using data from on-board cameras, traffic lights,
or roadside units. The challenge lies in selecting the
optimal data source for a specific application to minimize
latency and bandwidth while maximizing service
availability.

5.4.1.3 Ensuring Edge Node Reliability

In edge computing, data storage and computational tasks
are heavily dependent on edge nodes, which lack the robust
infrastructure of cloud data centers. Many edge nodes are
exposed to environmental factors, making their reliability a
key concern. For example, public safety solutions that rely
on computer vision use smart cameras for data storage and
processing. However, these cameras are vulnerable to
physical damage under extreme weather conditions, such
as strong winds shifting their angles or heavy snowfall
obstructing their view. In these scenarios, additional
infrastructure is needed to ensure the physical reliability of
edge nodes. Moreover, since edge data often has unique
spatial and temporal characteristics, it is critical to design
effective backup mechanisms to ensure data reliability.
Addressing the physical and data reliability of edge nodes
through infrastructure support is a critical research area.

Several initiatives have already been undertaken to deploy
edge nodes effectively. Many cloud service providers are
now offering edge nodes that push high-bandwidth, low-
latency, and localized services closer to the network's
edge [2, 17, 32]. This approach not only improves service
efficiency and capabilities but also maximizes the benefits
of multiple stakeholders in the edge computing ecosystem.



5.4.2 Deployment of Al Models on Resource-
Constrained Edge Devices

In current edge computing systems, edge devices are
typically limited to performing lightweight computing
tasks. To enable edge devices and servers to handle more
complex tasks with improved data-processing performance
and reduced latency, edge intelligence is applied within the
edge computing scenarios. This trend represents a
significant development in edge computing for industrial
IoT (IToT) environments [39]. However, training and
deploying Al models on edge devices pose challenges due
to their constrained computing and storage resources.
Resolving this conflict involves two fundamental
approaches: enhancing the computing power of edge
devices and simplifying or partitioning AI models deployed
on these devices.

5.4.2.1 Edge Intelligence Devices

Edge devices gather substantial data and require fast,
accurate computing models to provide responsive feedback
[126]. Deploying Al algorithms on edge devices allows
these models to leverage extensive source data for
enhanced accuracy, enabling timely and precise decision-
making. This integration theoretically achieves a
synergistic blend of edge computing and Al [38]. Yet,
optimizing devices for edge Al and realizing their full
complementarity remains a formidable challenge.

To bolster the computing capabilities of edge devices,
intelligent processing modules or specialized Al chips are
integrated. These hardware components typically include
general computing modules like CPUs, GPUs, and FPGAs,
along with customized Al processors tailored to specific
device requirements. While general computing modules are
widely used for training and inference of Al models on edge



devices, customized Al processors are increasingly tailored
to specific edge applications and scenarios, with ongoing
advancements in technology and architecture.

5.4.2.2 Edge Intelligence Models

Machine learning, particularly deep learning utilizing
artificial neural networks [44], represents a potent
approach for practical Al applications. However, deploying
deep learning models at the edge is hindered by their
complexity and computational demands.

(i) Model Partition: Deep learning models can be
architecturally partitioned for deployment in edge
computing environments using three main
architectures: independent deployment, collaborative
deployment among devices, and device-server
collaboration. Independent deployment across multiple
devices risks overloading individual edge devices.
Collaborative architectures distribute portions of the
neural network across multiple devices to optimize
performance and resource utilization. Research in this
area is nascent, necessitating further exploration and
refinement of partitioning strategies [58].

(ii) Model Size Reduction: Given the inherent
computational limitations of edge devices, model
simplification techniques are crucial to enhance
processing efficiency. Methods such as weight pruning
and data quantization are commonly employed. Weight
pruning involves prioritizing neurons based on their
contributions and eliminating less-impactful neurons to
reduce model size [19]. Data quantization reduces
computational overhead by representing model inputs
and outputs with fewer bits, thereby accelerating
operations.



5.4.3 Integration with Vertical Industries

In cloud computing scenarios, users from various industries
can transmit their data to centralized cloud computing
centers, where IT professionals handle storage,
management, and analysis tasks. This model allows IT
professionals to focus on the data itself without needing in-
depth knowledge of the user's specific industry.

However, in the context of edge computing, where edge
devices are closer to data producers, there is a much
tighter relationship with vertical industries. Designing and
implementing edge computing systems require significant
domain expertise. Vertical industries, eager to leverage
edge technologies to enhance their competitiveness, often
face a lack of specialized computing expertise. Therefore,
IT professionals must collaborate closely with these
industries to develop practical, deployable computing
systems. This collaboration involves addressing three key
challenges: bridging gaps with industry standards,
enhancing data protection and access mechanisms, and
improving interoperability with existing systems.

5.4.3.1 Bridging the Gap with Industry Standards

Different industries have accumulated years of experience
and established standards that must be respected when
designing edge computing systems. To minimize gaps,
these systems need to align with these industry-specific
standards. For instance, in the development of connected
and autonomous vehicles, successful implementation
requires expertise in intelligent algorithms, embedded
systems, and automotive control, which necessitates close
cooperation with traditional automotive manufacturers.
Similarly, in sectors like manufacturing and industrial IoT,
it is crucial to design edge computing systems that adhere



to industry standards to ensure successful integration and
deployment.

5.4.3.2 Enhancing Data Protection and Access
Mechanisms

In edge computing, data is often stored on devices closer to
the data source, which provides a level of privacy but also
creates challenges in terms of data sharing and access.
Industries like healthcare and law enforcement, which deal
with highly sensitive information, may be reluctant to
upload data to public clouds. Edge computing offers an
advantage by keeping data localized, thereby enhancing
privacy. However, this also leads to fragmented data
storage environments, complicating data sharing and
access. It is crucial to develop unified, user-friendly data
sharing and access mechanisms that maintain privacy while
ensuring the accessibility of data across the necessary
platforms.

5.4.3.3 Improving Interoperability

Edge computing systems must be designed to integrate
seamlessly with existing industry systems, taking into
account the current landscape and existing technologies.
For example, in video surveillance systems, although smart
cameras with built-in computing capabilities have become
more common, there are still many traditional,
nonintelligent cameras in use, generating vast amounts of
video data daily. Processing this data often involves
utilizing existing infrastructure, such as nearby stores or
gas stations [57], which may not always have the necessary
computing power on-site. To address this, edge computing
research should focus on how to deploy edge computing
devices effectively in such environments. Current solutions
often involve building more data centers or deploying Al-
integrated devices, but these approaches can be costly and



may revert to a cloud-centric model. Therefore, the
challenge lies in developing edge computing systems that
are both practical and interoperable with existing
technologies, ensuring they can be seamlessly integrated
into the industry's current operations.

To address this challenge, the Linux Foundation has
provided an open-source initiative, LF Edge [45], a
comprehensive ecosystem for the development and
deployment of edge computing solutions across multiple
industries. It consists of various projects, such as EdgeX
Foundry and Akraino edge stack, to offer modular, flexible,
and scalable frameworks for integrating edge computing
into vertical industries like telecommunications, healthcare,
and manufacturing.

EdgeX Foundry is a highly flexible open-source software
framework designed to enable interoperability between IoT
devices and applications at the edge. EdgeX Foundry
provides a modular reference architecture for data
ingestion, normalization, analysis, and sharing, which is
critical in environments like smart cities, retail, building
automation, and manufacturing. It supports a wide range of
protocols (e.g., message queuing telemetry transport
(MQTT), REST, and Bluetooth low energy (BLE)) and offers
enhanced security features, making it a key tool in
standardizing IoT frameworks across different market
verticals.

Akraino edge stack provides a collection of open-source
blueprints tailored for building edge infrastructure across a
variety of use cases, such as 5G, Al, and IoT. These
blueprints are designed to address the unique challenges of
edge environments by focusing on low latency, high
availability, and scalability. Akraino supports multiple
workload types, including VMs, containers, and
microservices, and offers zero-touch provisioning and



automated lifecycle management, which are crucial for
reducing operational complexity and costs in edge
deployments.

By adopting LF Edge, organizations can leverage these
tools to address specific deployment challenges, ensuring
seamless integration, enhanced security, and reduced
complexity in managing edge infrastructure. LF Edge not
only accelerates the deployment of edge nodes but also
enables the efficient use of AI models on resource-
constrained devices, thereby optimizing the overall edge
computing architecture within industry-specific contexts.

5.4.4 Hardware and Software Selection

Edge computing systems are characterized by
fragmentation and heterogeneity. On the hardware front, a
variety of computational units are utilized, including CPUs,
GPUs, FPGAs, and ASICs. Even within the same category of
computational units, products can vary significantly in their
capabilities. For instance, NVIDIA's edge hardware
offerings include the highly capable Drive PX2 and the
more modestly powered Jetson TX2.

On the software side, particularly in the domain of deep
learning, numerous frameworks such as TensorFlow,
PyTorch, are employed. Each combination of hardware and
software exhibits unique performance characteristics
across different application scenarios.

Taking image classification as an example, there are
numerous Al models with varying levels of computational
complexity and accuracy. Additionally, the diversity of edge
hardware options, each with different computational
capacities, further complicates the selection process. The
presence of multiple computing frameworks, each
performing differently on various edge hardware platforms,
adds another layer of complexity. Consequently, identifying



the optimal combination of models, frameworks, and
hardware involves significant deployment costs and trial-
and-error, leading to a considerable challenge: developers
often face difficulties in selecting the appropriate hardware
and software products to meet their specific application
requirements.

In making hardware and software selections, it is essential
to conduct a thorough analysis of the computational
requirements of the application. This allows for the
identification of hardware that meets the necessary
computational capacity. Additionally, selecting a suitable
software framework for development is crucial while also
considering power consumption and cost constraints.
Therefore, the design and implementation of tools capable
of assisting users in analyzing the performance and power
consumption of edge computing platforms and providing
informed recommendations for hardware and software
selection is extremely important.

5.5 Foundations and Business Models

Understanding the theoretical foundations and business
models behind edge computing is essential for grasping its
full potential and impact. This section provides an overview
of the key theoretical concepts that underpin edge
computing, from its architectural principles to its role in
distributed systems. Additionally, we examine the emerging
business models that are shaping the edge computing
market, offering insights into how this technology can drive
economic value and transform industries.

5.5.1 Theoretical Foundations

Brewer et al. [5, 13] developed search engines and
distributed web caching, which led them to hypothesize
about data consistency, service availability, and partition



tolerance. He presented this hypothesis at the 2000 PODC
conference, and it was later proven and established as the
CAP theorem (Consistency, Availability, and Partition
Tolerance theorem) [16]. The CAP theorem is a
fundamental theory in distributed systems, particularly in
distributed storage.

Therefore, in the research of computer systems based on
the edge computing model, establishing a theoretical
foundation for edge computing will be a critical challenge
for both academia and industry. Edge computing is a highly
integrative scientific research field, encompassing
computing, data communication, storage, and energy
optimization. On one hand, edge computing theory can be
based on multiobjective optimization theory to achieve
comprehensive optimization of computing, data
communication, and energy consumption. On the other
hand, specific theoretical foundations can be established in
different dimensions such as computing, data
communication, storage, and energy optimization.

For example, in the computing dimension, load balancing
theory for computing tasks can guide the allocation of tasks
between cloud centers and edge nodes, maximizing the
efficiency of computing resources. Similarly, based on load
balancing and distributed system theory, data
communication between the edge and the cloud can be
optimized to maximize network transmission bandwidth.
Research on distributed multidimensional energy
consumption models for edge devices (such as using
multidimensional Lyapunov theory) can establish energy
efficiency models for multiple edge devices, optimizing
energy consumption and improving the utilization of limited
energy resources. Additionally, reliability theories like the
Lyapunov reliability theory can be used to develop edge
computing reliability theories based on multiple edge
devices.



The theoretical foundation of edge computing is not yet
mature. It needs to integrate well-established theoretical
foundations from multiple disciplines, including computing,
data communication, storage, and energy optimization, to
propose comprehensive or multidimensional edge
computing theories. Addressing this critical issue is
essential for advancing research in edge computing. A
sound theoretical foundation will provide significant
guidance for academia and industry in future research and
development of application services based on the edge
computing model.

5.5.2 Business Models

The business model for cloud computing is relatively
straightforward. Users purchase services from relevant
providers based on their needs. Specifically, the cloud
services provided by cloud computing are an extension of
Internet-related services, involving the provision of
dynamic, scalable, and virtualized resources over the
Internet. Clients of cloud computing services can obtain the
necessary services on-demand and in a scalable manner via
the network. These services can include information
technology (IT) infrastructure, software resources, and
other Internet-related resources or services. Cloud
computing capabilities can also be traded as a service or
commodity over the Internet.

Edge computing spans multiple fields, including IT and
communication technology (CT), and involves various
industry chain roles such as software and hardware
platforms, network connectivity, data aggregation, chips,
sensors, and industry applications. The business model for
edge computing is not just service-driven, where users
request specific services, but increasingly data-driven. For
example, the Firework model [43] suggests that each user
request involves submitting a data request to the data



owner (stakeholder), after which the cloud center or edge
data owner processes and returns the results to the user.
This shifts the traditional unidirectional business model of
center-to-user to a multilateral business model of user-to-
center and user-to-user.

The business model for edge computing depends on
multiple stakeholders involved in the model. A significant
issue facing edge computing is how to integrate the
existing cloud computing business models to develop a
multilateral business model for edge computing.

5.6 Summary and Practice

5.6.1 Summary

This chapter addresses the critical technical challenges and
potential solutions in the realm of edge computing,
highlighting the necessity for close collaboration among
researchers and developers in computer systems,

networks, and application services to tackle these issues
effectively. The discussed challenges is summarized in
Table 5.1.



Table 5.1 Technical challenges in edge computing.

Challenges and
opportunities

Programmability

Automatic program
partitioning

Naming conventions

Data abstraction

Scheduling strategies

Data offloading and

load balancing

Privacy protection and
security

Description

Challenges in developing and
deploying applications on
heterogeneous edge nodes,
requiring new programming
models.

Partitioning applications
efficiently across edge nodes,
considering resources, energy
consumption, and response
latency.

Developing efficient and
standardized naming mechanisms
for dynamic and heterogeneous
edge environments.

Preprocessing data at the
gateway level, dealing with data
format diversity, abstraction
levels, and reliability.

Optimizing resource utilization,
reducing latency, and enhancing
task processing performance in
heterogeneous environments.

Distributing data and tasks across
multiple devices to prevent
overload, reduce latency, and
improve efficiency and reliability.

Protecting privacy and ensuring
security for data, sensors, edge
networks, and platforms,
including blockchain integration.



Challenges and
opportunities

Optimization metrics

Hardware and software
selection

Integration with
vertical industries

Description

Using metrics like latency,
bandwidth, energy consumption,
and cost to optimize load
distribution across edge and cloud
layers.

Selecting appropriate hardware
and software considering
computational requirements,
performance, and power
consumption.

Aligning edge systems with
industry standards, enhancing
data protection, and ensuring
interoperability with existing
systems.

Edge nodes deployment Selecting optimal edge nodes to

Execution of AI models
on resource-
constrained edge
devices

Edge service
management

Theoretical foundations

minimize communication delays
and computational overhead, and
ensuring reliability.

Training and deploying AI models
on edge devices with limited
computing resources, enhancing
performance and reducing
latency.

Ensuring reliable and flexible
edge service management,
handling dynamic and
heterogeneous IoT devices and
applications.

Establishing robust theoretical
foundations for multiobjective



Challenges and Description

opportunities
optimization in computing,
communication, storage, and
energy.

Business models Developing data-driven business

models for edge computing,
integrating existing cloud models
and involving multiple
stakeholders.

The chapter begins by discussing programmability,
emphasizing the challenges of deploying user applications
on heterogeneous edge nodes. It introduces new
programming models, such as the Firework model, which
enables distributed data processing and computation flows
in edge computing environments. The importance of
automatic program partitioning is also explained, focusing
on distributing tasks efficiently across different edge nodes
while considering resources, energy consumption, and
response latency.

Next, the chapter addresses the need for a standardized
naming mechanism in edge computing to manage device
identification and data communication. Solutions like
human-friendly naming conventions for smaller, fixed-edge
environments are proposed. The complexities of data
abstraction are explored, with an emphasis on
preprocessing tasks at the gateway level and addressing
challenges related to data format diversity, abstraction
levels, and data reliability. The chapter also delves into
optimizing resource utilization and reducing latency
through effective scheduling strategies tailored to the
heterogeneous and dynamic nature of edge computing
environments.



The necessity of data offloading to balance system load and
prevent device overload is covered, with discussions on
both full and partial offloading techniques and their
respective considerations. Then, the chapter introduces the
technical challenges for managing edge services, ensuring
a reliable and flexible edge computing system. Privacy
protection and security are highlighted as critical issues,
including sensor security, securing edge networks and
platforms, and data sharing security, with proposed
solutions like edge-based data processing and blockchain
integration.

Various metrics for optimizing load distribution, such as
latency, bandwidth, energy consumption, and cost, are
proposed to ensure efficient task allocation across the edge
and cloud layers. The chapter also discusses the challenges
of selecting appropriate hardware and software for edge
computing applications, emphasizing the need for tools to
analyze performance and power consumption. It
underscores the importance of aligning edge computing
systems with industry standards, enhancing data
protection, and improving interoperability with existing
systems.

Practical challenges of selecting and deploying edge nodes,
ensuring their reliability, and integrating them with
existing infrastructure are addressed. Techniques for
deploying Al models on edge devices are explored, focusing
on enhancing computing power and simplifying AI models
to overcome resource constraints.

Finally, the chapter concludes by discussing the theoretical
foundations and business models of edge computing. It
emphasizes the need for a robust theoretical framework to
guide future research and development and explores the
evolving business models driven by data-centric
approaches in edge computing.



5.6.2 Practice Questions

1. How does edge caching contribute to reducing latency
in edge computing?

2. Discuss the trade-offs between security and
performance in edge computing.

3. What are the challenges in implementing resource
management in large-scale edge computing
environments?

5.6.3 Course Projects

1. Design a dynamic data management framework that
supports real-time data ingestion, processing, and
retrieval at the edge. Use open-source tools such as
Apache Kafka (https://kafka.apache.org/) for real-time
data streaming, and Apache Cassandra
(https://cassandra.apache.orq) for distributed storage
to build the framework. Evaluate the performance in
handling large-scale data streams from IoT devices,
focusing on latency, throughput, and data consistency.

2. Explore resource allocation strategies in edge-cloud
environments and implement a resource allocation
mechanism that dynamically balances workloads
between edge devices and the cloud, based on real-time
conditions like network latency and device capabilities.
Use simulation tools such as CloudSim
(https://github.com/Cloudslab/cloudsim) or iFogSim

(https://github.com/Cloudslab/iFogSim) to model the
edge-cloud environment and implement the resource

allocation mechanism. Evaluate the mechanism's
effectiveness by running simulations with varying
network conditions, task complexities, and resource
constraints.
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3. Design a privacy-preserving mechanism suitable for an
edge computing scenario, such as secure data
processing in healthcare. Implement the proposed
mechanism using open-source frameworks like EdgeX
Foundry or Open Horizon
(https://Ifedge.org/projects/open-horizon/), focusing on
encryption, data anonymization, or secure data
transmission. Simulate potential security threats and
assess the effectiveness of the proposed mechanism.

4. Explore the integration of edge computing with existing
software and hardware solutions in a specific industry
(e.g., manufacturing, healthcare, and 5G) and develop a
prototype that demonstrates this integration. Use open-
source frameworks like EdgeX Foundry
(https://Ifedge.org/projects/edgex-foundry/) to
integrate edge computing with selected software and
hardware solutions.


https://lfedge.org/projects/open-horizon/
https://lfedge.org/projects/edgex-foundry/
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6
Future Trends and Emerging

Technologiesf

As technology evolves, new innovations continue to
emerge. The combination of edge computing with emerging
technologies and the enhancement of edge computing
power in new scenarios have brought significant changes to
people's lives. This chapter introduces several computing
paradigms that have been proposed in recent years,
comparing and analyzing their similarities and differences.
Furthermore, it explores the applications of edge
computing technology in several typical scenarios and
presents some research directions worth further
exploration in these areas.

6.1 Edge Computing and New
Paradigm

The core concept of edge computing is relatively
straightforward: pushing or pulling computing from a
device or cloud to an edge. In this case, the computing task
will be divided into different entities, that is, device, edge,
and cloud, thus forming the computing path [49]. In recent
years, some computing paradigms have been proposed and
emerged, such as sky computing [31], computing power
network [33], and meta computing [5], which have gained
prominence in various fields. This chapter primarily focuses
on clarifying the relationship between these newly emerged
computing paradigms and edge computing, while also
describing the research progress of edge computing across
various verticals.



6.1.1 Related New Paradigms

In recent years, with the development of edge computing, a
series of new computing paradigms have gradually
emerged. Following their introduction in chronological
order, some of the more typical ones are cloud-edge-device
collaboration, sky computing [31], computing power
network [33], and meta computing [5]. Cloud-edge-device
collaboration has been mentioned since the inception of
edge computing. For instance, in our work Firework [49],
the concept of the cloud-edge collaboration was already
used to describe this concept. This paradigm is essentially
a concrete manifestation of edge computing. Similarly,
concepts like edge intelligence, which were mentioned
earlier, are also specific applications of edge computing.

Sky computing and meta computing, are new computing
paradigms that have been proposed in recent years. These
paradigms were developed after observing certain
limitations of edge computing, leading to proposed
improvements. However, they can still be regarded as
extensions of edge computing, with added features. For
example, sky computing extends from the cloud's
perspective, while meta computing extends from the
perspective of cross-service providers and security.
Computing power network, primarily proposed to integrate
the computational power of both the cloud and the edge,
providing a unified, accessible, and seamless computing
infrastructure for end devices.

As John McCarthy predicted about the future of computing
in 1961, “Computing may someday be organized as a public
utility just as the telephone system is a public utility. Each
subscriber needs to pay only for the capacity he actually
uses, but he has access to all programming languages
characteristic of a very large system ...Certain subscribers
might offer service to other subscribers ...The computer



utility could become the basis of a new and important
industry.” In Sections 6.1.1.1-6.1.1.3, we will briefly
introduce sky computing and meta computing.

6.1.1.1 Sky Computing

Sky computing was proposed by Ion Stoica and Scott
Shenker from UC Berkeley in 2021 in their paper “From
Cloud Computing to Sky Computing” published at HotOS
[31]. Unlike the well-known cloud computing, sky
computing is seen as the future of cloud computing. It
envisions a sky filled with many clouds and aims to solve
the problem of cross-cloud integration, breaking down the
barriers between different cloud platforms and maximizing
the use of cross-cloud data. Therefore, in sky computing,
the authors designed a two-layer architecture consisting of
a compatibility layer and an intercloud layer as shown in
Figure 6.1.
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« Compatibility layer: In cloud computing, different
cloud platforms may adopt different architectures and
provide distinct application programming interfaces
(APIs). Similar to how traditional operating systems
abstract away the differences in hardware
functionality, the compatibility layer in sky computing
is designed to mask the differences in cloud platforms'
implementations. By abstracting various APIs, it
provides a unified interface to facilitate application
development. Fortunately, thanks to existing unified
interfaces in traditional technologies, such as RESTful
APIs for network access, S3 protocols for data storage,
and Docker or virtual machines for runtime
environments, the implementation of the compatibility
layer mainly focuses on managing the integration of
different cloud service providers' APIs.



- Intercloud layer: The intercloud layer is built on top
of the compatibility layer and is primarily responsible
for providing services to users. It allows users to upload
applications and policies. Once the intercloud layer
receives a user's request, it will enforce the policy
specified by the user to determine where the
application should run—whether in a specific location
or freely scheduled based on circumstances. Then, the
intercloud layer calls the compatibility layer to send
requests to the designated cloud service providers for
container pulling, launching, and, after the task is
complete, for destroying the container or virtual
machine. Naturally, the policy can also include
additional constraints, such as cost, task completion
time, and more.

From the above functionality overview, it is clear that sky
computing essentially abstracts away the differences
between clouds through the compatibility layer, creating a
unified interface for the intercloud layer to invoke. The
intercloud layer, in turn, provides an interface for users,
allowing them to run applications without needing to know
which cloud provider their application is operating on.
Users only need to specify constraints, such as runtime,
capacity, and cost, and the intercloud layer will
automatically find the optimal cloud service provider to
deliver the service.

To implement these functions, the sky computing team has
proposed several related projects, such as SkyPilot [45]
and Skyplane [14]. SkyPilot [45] can be considered the first
attempt at sky computing. SkyPilot is a framework for
running large language models (LLMs), artificial
intelligence (AI), and batch jobs on any cloud, offering
maximum cost savings, the highest GPU availability, and
managed execution. Skyplane [14], on the other hand,



addresses the issue of cross-cloud data transfer, providing
a system for bulk data transfers between cloud object
stores. It uses cloud-aware network overlays to optimally
balance price and performance.

Additionally, while computing can be deployed and
executed at relatively low costs, the execution of services
generates vast amounts of data. Migrating this data with
the service incurs significant costs. In other words, cloud
object stores offer vastly different price points for object
storage based on workload and geography. To address this
issue, the authors of sky computing also proposed

SkyPIE [1], a solution for managing the placement of data
objects during cross-cloud computing.

6.1.1.2 Computing Power Network

Currently, there is no unified definition for computing
power network. The concept was broadly introduced
around 2019 as a key infrastructure for computation
power, and it can be seen as an evolution of grid
computing. The initial goal of a computing power network
is to package computation power and deliver it to the
places where users need it, much like how electricity is
transmitted in a power grid [33, 47]. Although it is still in
its early stages of development, different individuals,
organizations, etc., provide different explanations for it.
Just as with edge computing, most people believe that
storing data at the edge and pushing computing power to
the edge constitutes edge computing. Similarly, computing
power networks have different interpretations depending
on perspective.

For example, from the perspective of data centers, the
computing power network could be divided into four stages
according to maturity: (1) Applications submit tasks and
data to a single data center, which then executes them and



returns the results. (2) For homogeneous data, applications
can be submitted to multiple homogeneous data centers,
and the network scheduler eventually dispatches them to a
single data center for execution. (3) Applications can run
across multiple homogeneous data centers or be submitted
to heterogeneous data centers but are ultimately
dispatched to a single data center for execution. (4) Similar
to the power grid, users only need to submit their
application requirements, and the network scheduler
coordinates heterogeneous resources to perform the
computations. Applications can run simultaneously in
heterogeneous data centers and deliver results.

From a broader perspective, a computing power network
aims to connect the computing power currently distributed
across cloud computing, edge layers, and device layers into
a pooled resource using a network. This would allow users
to utilize computing power as needed. From this
standpoint, computing power networks can be viewed as a
further evolution of edge computing, integrating efficient
collaboration across cloud, edge, and device layers.
However, as previously mentioned, the development of
computing power networks is still in its infancy, and its
primary drivers are currently large enterprises, particularly
those that control data centers and cloud computing
centers.

From a broader perspective, a computing power network
aims to connect the computing power currently distributed
across cloud computing, edge layers, and device layers into
a pooled resource using a network. This would allow users
to utilize computing power as needed. From this
standpoint, computing power networks can be viewed as a
further evolution of edge computing, integrating efficient
collaboration across cloud, edge, and device layers.
However, as previously mentioned, the development of
computing power networks is still in its infancy, and its



primary drivers are currently large enterprises, particularly
those that control data centers and cloud computing
centers.

At present, the main focus of computing power networks is
still on interconnecting cloud computing, similar to what
sky computing is doing. The true integration of computing
power across the entire network is still under research and
development.

6.1.1.3 Meta Computing

Meta computing is a new computing paradigm proposed by
Cheng et al. [5]. As one of the earlier scholars involved in
the research of edge computing, Cheng et al. believe that
the current computing paradigms are inadequate.
Presently, the edge computing environment tends to be
isolated, with edge computing nodes still belonging to the
same service provider. There is a lack of interoperability
and mutual trust between service providers, preventing
true collaboration between nodes, as shown in Figure 6.2.
Moreover, when there are not many users, maintaining an
edge node is actually quite costly, leading to limited
resources, service capabilities, and coverage in edge
computing.
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Although cloud computing and computing power networks
have attempted to address some of these issues—such as
sky computing, which enables cross-cloud interoperability
through the compatibility layer and intercloud layer—these
paradigms primarily focus on the cloud side. The edge side
is still not fully considered. Meta computing was introduced
specifically to solve this problem of cross-domain
collaboration. The authors presented a vision for meta
computing, aiming to achieve “for any person or task, the
entire network functions as a single computer.” This is
referred to as “network-as-a-computer (NaaC),” and the
resulting entity is termed a “meta-computer.”



Since computing power barriers across different service
providers, security becomes a critical issue. Thus, the
authors proposed an architecture design consisting of two
core modules as shown in Figure 6.3: the zero trust
computing manager module and the device manager
module. The device manager module aims to unify different
computational resources. In the zero trust computing
manager module, there are components such as the
identity and access manager, the resource scheduler, the
task manager, and a settlement and incentive system.
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Compared to traditional computing paradigms, the zero-
trust-based module is something not found in other
computing paradigms. Therefore, we will focus on
introducing the functions of these modules. The identity
and access manager is used for rigorous identity
verification of nodes (including users and devices), thereby
creating a zero-trust network and computing environment,



while supporting fine-grained management of data access
permissions and resource usage. The zero-trust computing
manager is responsible for building a distributed ledger,
which ensures state consistency in distributed computing
tasks through the use of the distributed ledger.

6.1.2 What Is New for Edge Computing

Although some new computing paradigms have been
introduced in recent years, they can still be regarded as
extensions of edge computing. Table 6.1 summarizes the
characteristics of the aforementioned new paradigms and
their relationship to edge computing. It should be noted
that the edge computing referred to in this book follows the
computing path described in edge computing and Firework,
involving the device, edge, and cloud layers.

Table 6.1 Relationship of different computing paradigms to
edge computing.

Name Features Relationship to
edge computing

Sky computing Cross-cloud Cloud extensions
collaboration

Computing Data center and Cloud and edge

power network edge integration extensions

Meta Cross-service Cross-domain

computing provider security extensions
collaboration

If we only consider their goals, it may seem that only meta
computing is related to edge computing, or that only meta
computing can be considered an extension of edge
computing. However, when we take into account the
computing path concept that we proposed earlier, it
becomes clear that the cloud is also multifaceted. In



Firework, the concept of different holders was mentioned,
meaning that the edge and cloud can belong to different
service providers. Therefore, if we integrate sky computing
and computing power network with edge computing, they
both significantly enhance the capabilities of edge
computing, as follows:

« Sky computing: By connecting different clouds, sky
computing enables data from devices to securely and
quickly select appropriate compute nodes in a
heterogeneous multi-cloud environment, thereby
enhancing the collaborative capabilities of edge
computing.

« Computing power network: Similar to sky
computing, computing power networks can achieve
comparable functionalities. Additionally, the computing
power network plans to incorporate the computing
power of the edge layer in the future, effectively
merging the edge layer and cloud layer into a unified
network. Therefore, the computing power network can
be viewed as an enhancement to edge computing from
both the cloud and edge layers.

« Meta computing: When meta computing was
proposed, it directly addressed one of the key issues in
current edge computing—cross-domain collaboration.
Therefore, when meta computing is fully realized, it
effectively becomes a more secure implementation of
edge computing. In other words, it can be considered
an enhancement to edge computing from a security
perspective.

From the above analysis, and as the proposers of meta
computing have pointed out, edge computing has shown
certain limitations, especially from a security perspective,
in terms of its computing paradigm. The current



implementation of edge computing is not yet the complete
form of what we advocated for in our previous papers. The
common practice today is simply to push computing tasks
to the edge and label it as edge computing. However, the
concept of the computing path has not been fully
considered. Particularly, most edge computing solutions
are confined to a single service provider, and achieving
cross-service provider edge computing remains challenging
due to the lack of unified tools.

6.1.3 Future

Whether it is sky computing, computing power network, or
meta computing, all have recognized this issue and aim to
enhance the computing paradigm from the perspective of
heterogeneous, cross-service provider collaboration.
Similarly, the realization of our proposed computing path
also requires such cross-domain collaboration to fully
unlock the potential of edge computing. Therefore, as a
major trend for the future, we recommend enhancing cross-
domain collaboration capabilities across the cloud, edge,
and device layers.

6.2 Integration with Artificial
Intelligence

In recent years, with the rise of ChatGPT, large language
models have gradually gained attention. Edge computing,
on the other hand, enables devices to harness intelligence
more effectively, empowering them with greater
capabilities. This section discusses the relationship
between artificial intelligence and edge computing,
highlighting several roles edge computing plays in the
training, inference, and caching of large language models.
Finally, it explores future applications of edge intelligence
and addresses the challenges that currently exist.



6.2.1 Basic Overview and Why Need Edge
Computing

A LLM is a type of language model that, compared to
traditional models like MobileNet, typically refers to
artificial neural networks with billions or even more
parameters. Table 6.2 shows the parameter counts of some
existing large language models, and these numbers are still
growing. LLMs are general-purpose models that perform
well across a wide range of tasks, rather than being trained
for a single specific task (such as sentiment analysis,
named entity recognition, or mathematical reasoning).

Table 6.2 Model parameter scales.

Name R&D team Parameter
scale
GPT-1 OpenAl 0.11 B
GPT-3 OpenAl 175 B
GPT-4 OpenAl 1.8T
Sora OpenAl 7B
Gemini 1.5 pro Google 175 B
Gemma-2B Google 2B
(opensource)
Gemma-7B Google 7B
(opensource)
StableDiffusion Qualcomm 65 B
LLaMA (opensource) Meta 7-65 B
ChatGLM Tsinghua 6-130 B
(opensource) University
Hunyuan Tencent 100 B
ERNIE Bot Baidu 260 B



It is precisely due to their massive number of parameters
that LLMs can capture much of the syntax and semantics of
human language and retain a large amount of factual
information from their training. The most successful large
language model to date is the ChatGPT series developed by
OpenAl, which is commonly used for tasks such as text
generation, content summarization, sentiment analysis,
language translation, and code generation. Additionally,
large language models can be customized using techniques
like prompting or fine-tuning to generate outputs that
better align with user requirements. There are also domain-
specific large language models, such as Microsoft's Copilot,
which can analyze code and assist in programming based
on user requests.

The rise of large models is inseparable from advancements
in hardware computing capabilities and the expansion of
datasets. At the same time, their training, inference, and
other processes require massive amounts of resources. As
shown in Table 6.2, the parameter count of GPT
(generative pre-trained transformer) models grew from 110
million in GPT-1 to 175 billion in GPT-3. After
commercialization, the latest GPT-4 expanded tenfold to 1.8
trillion parameters. Training such a massive model
required OpenAl to use 25,000 A100 GPUs over 90-100
days, with a single training run potentially costing up to
US$ 63 million.

Currently, most large language models are run in the
cloud, with only a few capable of operating on high-
performance PCs, such as various customized models with
around 6 billion parameters. However, to enable better
execution on various Internet of Things (IoT) devices or
personal portable devices, the models are usually further
compressed. For example, Google launched Gemini Nano
on the Pixel 8 Pro smartphone, with models having 1.8
billion and 3.25 billion parameters. Qualcomm plans to



introduce LLaMA 2 support for flagship smartphones and
personal computers powered by Snapdragon chips. Apple
also released its own large models in 2024. Apple's
OpenELM models come in various sizes, with parameter
counts of 270 million, 450 million, 1.1 billion, and 3 billion.

Although these LLMs, with hundreds of millions or billions
of parameters, are designed for smart terminals, deploying
LLMs on-device remains a significant challenge. However,
on-device LLMs can greatly enhance the intelligence of
devices, enabling them to provide smarter and more
efficient services. Only when all IoT devices exhibit a
certain degree of intelligence—whether by becoming
intelligent themselves or by collaborating with other
devices—can the vision of a fully interconnected intelligent
world be realized.

Edge computing plays a critical role in empowering
terminal devices by utilizing edge devices and cloud
services. It holds great promise in supporting the
development of large language models, but there are still
many challenges ahead. Specifically:

« Smartphones are not the only part of the Internet of
Everything. In the context of the Internet of Everything,
devices within the 10T, cyber-physical systems, and
similar environments are all connected to the Internet,
communicating with each other to complete
predetermined tasks. In this scenario, smartphones are
just one of the many terminals within the IoE, and they
are relatively high-performance devices. However,
there are many IoT devices with limited resources,
which cannot be equipped with high-performance
computing units like smartphones.

« Devices and demands are heterogeneous. The terminal
devices in edge computing include a large number of



heterogeneous devices. Even among smartphones, their
performance varies, and not all smartphones can
handle LLMs. In such a heterogeneous environment,
collaborative computing in edge computing needs to
dynamically adjust based on heterogeneous computing
requirements, network demands, latency needs, and
more to ensure the availability of LLMs.

« Security and privacy is a big issue. LLMs are trained on
vast amounts of data, much of which is user-generated.
One of the benefits of edge computing is that raw data
remains local and is only shared after processing, thus
mitigating privacy concerns. On-device LLM inference
eliminates privacy breaches and reduces the need for
Internet connectivity. However, since LLMs require
substantial computational power, memory, and energy
resources, the challenge lies in how to leverage edge
computing technology to accelerate inference and
learning of LLMs on the device side.

6.2.2 Integrating LLM with Edge Computing

Edge computing can be seen as a computational paradigm
that integrates computing power. When combined with
large language models, it can provide benefits in various
aspects such as model training, inference, and fine-tuning
by leveraging the integration of edge computing.

6.2.2.1 Training with Edge Computing

Training large language models requires vast amounts of
data to achieve accurate results. These data may contain
significant amounts of user privacy, making on-device
learning or fine-tuning the most ideal approach from a
privacy perspective. However, large language models have
extremely high computational requirements. According to
reports, GPT-4 requires approximately 560 trillion floating-



point operations for each forward pass to generate a single
token. However, advanced A100 GPUs offer only 19.5
trillion floating-point operations per second. This means
that with a single A100 GPU, GPT-4 would require around
28 seconds for each forward pass to generate a token.
Moreover, backward propagation typically demands even
more computational resources than forward passes.

Given that large language models have only been proposed
and gained attention in recent years, and since their
training typically requires large-scale GPU clusters with
tens of thousands of GPUs to achieve optimal results, there
has been relatively little research on training models at the
edge or device level. This remains an open question and
poses a significant challenge. In subsequent text, we will
present some hypotheses about the integration of large
language models and edge computing, along with some of
the work done by scholars in this area.

Centralized Edge Learning In early studies, most
researchers referred to computations carried out on edge
devices as edge computing. In this case, it only involves
offloading the training tasks to edge servers, while devices
do not participate in the training process. All data is
uploaded to the edge server for training. Currently, some
research is exploring this approach for LLM development.
For example, Narayanan et al. [25] have conducted studies
in this area. They leverage distributed GPUs at the edge to
train LLMs. However, this approach is not applicable to
most edge nodes. Currently, research in this field remains
relatively scarce due to the high resource demands of LLM
training, which a single edge device is unable to support.
We also note that fine-tuning consumes less than training
the entire model, so might we not consider placing the fine-
tuning at the edges to construct models that are more



suited to edge-specific environments? This is an open-
ended question.

Distributed Edge Learning This approach leverages the
distributed nature of edge computing, coupling the model
learning process with distributed computation, allowing
different devices to train the same model. In this setup,
federated learning and split learning can be integrated with
edge computing in LLM training. The main difference
between the two is that in federated learning, the model is
not split, meaning all participants train the same model,
leading to larger parameter transmission. In split learning,
the large language model is divided into smaller
submodels, and different devices focus on training specific
parts of the model. Eventually, these submodels are
aggregated into a single model in the cloud. Compared to
centralized edge learning, research on distributed edge
learning is more extensive. This is mainly because the
resource demands of large language model training are too
high for most edge nodes to handle the significant
computational load.

In the field of federated edge learning, Wang et al. [38]
proposed a cloud-device collaborative learning framework
for multimodal large language models. This framework
employs a token sampling strategy to filter out some
irrelevant tokens, reducing transmission costs and
improving training efficiency. It also uses adapter-based
knowledge distillation to distill the large language model
into smaller models that are easier to deploy on edge
devices. During model downloading or updating, it adopts a
dynamic weight update compression strategy to reduce
transmission costs and balance the differences between
cloud and edge models. This framework can also be applied
in cloud-edge collaborative environments.



Furthermore, some work places the training in the cloud
while allowing fine-tuning to take place at the edge or on
devices, which is a promising approach. Additionally, in the
context of split learning, Lin et al. [20] proposed an
efficient parallel split learning scheme. Looking ahead,
particularly in combination with large models, split
learning may represent a more viable training paradigm
because it enables training sub-models on devices and
integrates the complete model in the cloud.

6.2.2.2 Inferring with Edge Computing

Compared to training, the inference of LLMs consumes
slightly fewer computational resources [42]. However, it is
still difficult to directly apply LLMs to end devices without
leveraging edge computing for support. For the LLMs
themselves, numerous techniques have been developed to
reduce the costs associated with computation and
communication. Common compression techniques such as
pruning, quantization, and knowledge distillation are
frequently employed. For example, through INT4
quantization, Google's Gemini Nano models, with 1.8 billion
and 3.25 billion parameters, can run on the Pixel 8 Pro.
Similarly, Gemma 2B, after INT4 quantization, can be
deployed on iOS devices. Apple also released its LLMs in
2024. The OpenELM models from Apple are available in
various sizes, with parameter counts of 270 million, 450
million, 1.1 billion, and 3 billion.

Although these quantization techniques help, LLMs still
struggle to be deployed on other edge devices due to the
around 10 GB memory requirements and second-level
latency involved in computations. Compared to the massive
cloud-based models with hundreds of billions of
parameters, edge models are more limited in functionality.
For example, edge models can only support relatively
“basic” functions such as text summarization, suggesting



intelligent replies based on context, and checking
grammar. Therefore, introducing edge computing to
enhance the inference of edge models is crucial to
overcome these limitations [12].

Optimizations of LLMs Large language models can be
optimized using a number of unique techniques. Among
these, the more typical ones include speculative decoding,
and early exit.

« Speculative decoding: Large models are slow in
inference, but while smaller models may have inferior
inference capabilities, they can still provide a passable
result. Therefore, some have compressed large models
into smaller models. These smaller models are then run
on edge devices to first obtain a result. The data is
subsequently sent to cloud or edge services to execute
the complete large model for a more accurate result.
Finally, the best result is used to further refine the
output of the edge device's model. For example, Wang
et al. [37] proposed Tabi, a multistage inference engine
system that uses smaller models along with optional
LLMs to provide query services for demanding
applications. Tabi uses calibrated confidence scores to
decide whether to return the smaller model's accurate
results at high speed or to reroute them to the LLM.
For rerouted queries, it employs attention-based token
pruning and weighted ensemble techniques to offset
system overhead and accuracy loss.

- Early exit: Early exit techniques have been widely used
in LLM inferencing to reduce latency. In this case, the
model on the end-device or edge-device can be
executed only partially instead of having to be executed
in its entirety, which can reduce the cost. For example,
Chen et al. [4] proposed a framework for large



language modeling called early-exit (EE)-LLM with
support for both training and early exiting of inference,
which improves the overall model training and
inferencing speed. At the same time, it can be
combined with others to further reduce the overall
latency.

Splitting Model with Edge Computing From the
inception of edge computing, extensive research has
focused on empowering edge devices with artificial
intelligence. Researchers have explored methods such as
splitting models or processing the entire model on edge
devices. The latter approach, where the entire model is
processed on the edge device, is more straightforward.
However, the former approach—splitting the model for
execution—tends to be far more efficient than executing
the entire model on edge devices.

One classic work, such as that by Kang et al. [17], involves
splitting networks like AlexNet layer by layer. Their
research demonstrated the data sizes of the intermediate
outputs after splitting and showed that utilizing cloud-edge-
device collaboration can effectively reduce overall latency.
Similarly, the work of Zhang et al. [48, 49] from both the
application and model levels has further confirmed this
approach.

In the context of LLMs, the approach of model splitting and
deploying along the edge computing path is particularly
well suited for LLM inference. On the one hand, compared
to on-device LLM inference, split LLM inference offloads
most of the computation to edge servers, thereby reducing
the workload on the device, which is crucial for
computation-intensive LLM inference. On the other hand,
considering that LLM applications in edge networks (such
as healthcare and autonomous driving) often involve highly
sensitive personal data, split LLM inference can effectively



alleviate privacy concerns, as the edge device does not
need to share private raw data with the edge server.

Following the approach of Kang et al. [17], splitting LLM
inference can still be effective. The initial layers of the
model can be processed on the device, while the remaining
layers are offloaded to the edge server for inference. Some
works have already adopted this approach, such as Ohta
and Nishio [26] and Ma et al. [23]. Of course, this method
still involves significant overhead, placing high demands on
the inference capabilities of the edge servers.

Also, edge computing could utilize the feature of LLMs to
further reduce the latency in terms of computing and
transmitting. For example, some works target token
compression in LLMs, which they call token representation
reduction. In fact, the core idea of their work is to take the
intermediate output layers that need to be segmented, and
compress them using quantization, pruning, and so on. For
example, Cao et al. [3] inserts a binarization module after
layer norm layers to quantize the token representations
with 1-bit vectors.

6.2.2.3 Model Caching with Edge Computing

In fact, beyond simply improving model inference and
training, model caching is another common approach used
to enhance efficiency in distributed inference or learning.
Just as edge computing originally evolved from data
caching in content delivery networks (CDNSs), it can be
seen as caching various computing services at the edge.
Model caching is also applicable to large models.

In LLMs, techniques such as fine-tuning often allow
modifications to the base model, resulting in multiple
models that are fine-tuned from the same base. However,
these models often share many identical sub-models. By
utilizing caching techniques to store these submodels at



the edge, both learning and inference can significantly
reduce memory overhead on edge devices. Furthermore,
batch processing can be employed to accelerate inference.
This technique proves especially effective in distributed
edge learning, particularly in scenarios like split learning
or split inference.

In terms of caching, some studies are already underway.
For example, Qu et al. [28] proposed the TrimCaching
framework, which focuses on parameter-sharing edge
caching for AI model downloading. However, this concept
can also be applied to collaborative inference.

6.2.3 Integration with Generative Al

Generative Al refers to a subset of Al that focuses on
creating new content [43], such as text, images, music, or
even code, by learning patterns from existing data. Unlike
traditional Ai models that are designed to recognize
patterns or make decisions based on input data, generative
Al models can produce original content that wasn't
explicitly programmed. This is achieved through techniques
such as generative adversarial networks (GANSs),
variational autoencoders (VAEs), and more recently, LLMs
like GPT.

These models have gained significant attention due to their
ability to generate high-quality, contextually relevant
outputs that can mimic human-like creativity and decision-
making. This ability to generate new data or content has
broad applications across various fields, including natural
language processing, computer vision, and even scientific
research [29].

Generative Al can be effectively integrated with edge
computing to enhance the capability of IoT systems and
other edge applications in a few ways.



- Real-time Data Processing and Decision-Making:
Generative Al models deployed on edge devices can
analyze and generate data in real time, allowing for
immediate responses to be made directly on the device.
For example, in autonomous vehicles, generative Al
could process data from sensors and cameras to predict
and react to traffic conditions without needing to
communicate with a central cloud server. This
capability is critical in situations where low latency and
real-time decision-making are essential.

« Reducing Latency and Bandwidth Requirements:
One of the primary benefits of integrating generative Al
with edge computing is the reduction in data that needs
to be sent to and from the cloud. By processing and
generating data locally, edge devices can reduce the
amount of bandwidth required for communication,
which is particularly important in environments with
limited connectivity or where data privacy is a concern.
For instance, in smart cities, generative Al could be
used to process video feeds from traffic cameras to
optimize traffic flow in real-time, reducing the need to
transmit large video files to a central server.

- Optimizing AI Models for Edge Devices: Edge
devices typically have limited computational and
memory resources, making it challenging to deploy
large generative AI models. However, model
compression techniques discussed in Chapter 4, such
as pruning and quantization, can be used to reduce the
size and complexity of these models, making them more
suitable for edge deployment. For example, a quantized
version of a generative Al model could run on a
smartphone or IoT device, generating useful outputs
while consuming less power and memory.




« Enhancing Privacy and Security: Generative Al
allows edge devices to be more powerful when
processing data locally and, therefore, enhances
privacy and security. Sensitive data, such as personal
health information, can be analyzed and acted upon
directly on the device, such as personal health
information, can be analyzed and acted up directly on
the device, without needing to transmit it to a cloud
server where it could be vulnerable to breaches.

- Hybrid Edge-Cloud Architectures: In scenarios
where edge devices are not capable of handling the full
computational load required by generative Al models, a
hybrid approach can be used. In this setup, edge
devices perform lightweight processing, while more
computationally intensive tasks are offloaded to nearby
edge servers or the cloud. This allows for efficient
processing while maintaining the benefits of low
latency and improved privacy. For instance, a smart
home system might use generative Al to process voice
commands locally, while more complex language
processing is handled by a cloud server.

Integrating generative Al with edge computing is promising
in creating more intelligent, responsive, and secure
systems across various industries, This synergy is likely to
drive significant advancements in the way we interact with
and benefit from technology in the coming years.

6.2.4 Applications and Future

Currently, many applications are being developed based on
large models. The most common use cases remain
conversational chatbots, followed by various assistants,
such as Google Assistant on smartphones. Of course, by
enhancing large models with domain-specific knowledge
and performing appropriate fine-tuning, we can obtain



domain-specific large models that lead to even more
applications. For instance, large models can be used in
industrial design, medical assistance, and many other
fields. These fine-tuned domain-specific large models also
give rise to models further optimized through various fine-
tuning or prompt engineering, which in turn fosters the
creation of a large model marketplace [30]. Next, we will
explore several potential large model application domains
that could be highly beneficial and valuable in the future.

- Robots: By injecting the intelligence of LLMs into
robots, significant potential can be unlocked [39], such
as achieving humanoids similar to those in the game
Detroit: Become Human. Leveraging the powerful
capabilities of LLMs, humanoid robots can efficiently
perform a wide range of tasks, from assisting in
warehouses to executing rescue missions, and
providing support in hospitals, elderly communities,
and households. In this area, many companies are
already actively developing solutions. For example,
Tesla is developing the second generation of its
general-purpose robot, Optimus, while NVIDIA has its
GROOT project. In the academic world, many efforts are
also being made in this direction. For instance, Joublin
et al. [15] proposed the CoPAL architecture, and Zhao
et al. [51] introduced the RoCo system, both of which
utilize large language models to achieve collaborative
path planning for multiple robots, thus improving task
execution efficiency.

« Autonomous driving: Most existing autonomous
driving solutions rely on a modular approach, dividing
driving tasks into independent components such as
perception, prediction, and planning. However,
modular design inherently has a limited capacity for
tasks that require complex, human-like reasoning. And



LLMs are suitable for this area while it could be a black
box to achieve end-to-end learning and inference [7].
By embedding large language models, not only can
better-driving decisions be made [44], but in-vehicle
assistant functions can also be provided
simultaneously. Additionally, the in-vehicle assistant
could anticipate users' needs and adjust driving
decisions accordingly, offering a more comfortable
driving experience.

Of course, new technologies also face numerous
challenges, and this is equally true for large language
models. For large language models integrated with edge
computing, there is still a long way to go. Several open
questions need to be addressed, as listed below.

- Explainability: In traditional artificial intelligence,
explainability has become a key research focus. The
same applies to LLMs. However, due to the more
complex architecture of LLMs, how to achieve the
feature of explainability is a major issue. At the same
time, explainability during processes like model
splitting and submodel extraction is a critical
consideration in edge computing.

- Verifiability: The inferring overhead of LLMs is
relatively high, and edge devices may cut corners by
not returning the correct results to conserve their own
resources. This is particularly concerning when a small
model runs on the endpoint while a large model runs on
the edge or in the cloud. The edge service might
entirely agree with the results from the small model at
the endpoint and skip executing the large model.
Although there are already some verifiable execution
efforts based on secure multiparty computation, the



overhead is too high to be practical in real-world
scenarios.

- Trimmability: Considering the use of edge caching
and other techniques to cache large models and
accelerate inference speeds, one could also explore
selectively executing only certain modules based on the
problem at hand. For lower-impact models, smaller
models could be used as substitutes. By trimming the
execution based on the problem, the inference speed
can be further increased.

6.3 6G and Edge Computing

In the realm of network communications, edge computing
is often employed to optimize the quality of service at the
network edge. For instance, in the 5G era, by deploying
computing resources near base stations, some data can be
processed and forwarded at the network edge without
needing to route through the core network, thus speeding
up data transmission within the network. Similarly, in 6G,
recognizing the advantages of emerging technologies like
edge computing, there are plans to deploy artificial
intelligence at base stations through edge computing,
further enhancing network service quality and improving
data forwarding efficiency.

6.3.1 Basic Understanding for 6G

6G technology is aimed at communication systems beyond
2030, with its primary characteristic being the integration
of artificial intelligence to optimize network
communication, ranging from physical channels to data
packet forwarding [36]. 6G may also enable ubiquitous Al
support, providing devices with embedded Al

capabilities [18]. While the specific frequencies for 6G are
yet to be determined, the IEEE has indicated that



frequencies ranging from 100 GHz to 3 THz are likely
candidates for 6G [34]. Some of the typical features of 6G
include the following:

« Increased bandwidth: With the ongoing
advancements in radio interface modulation, coding
techniques, and physical layer technologies, the speed
of 6G networks is expected to increase significantly.
While the peak rate for 5G is 20 Gbps, 6G could achieve
peak rates of 1-10 Tbps due to the use of terahertz and
optical frequency bands.

« Diversified communication access: In 1G through
5G networks, all devices accessed the network via base
stations. However, the 6G vision includes the addition
of visible light modulation technology, which can
enhance signal quality in specific scenarios.
Additionally, 6G plans to integrate satellites at various
orbital heights into a unified space-ground network,
providing diverse access methods for remote areas,
maritime users, and low-altitude unmanned devices,
thereby improving network coverage.

« Al enablement: As 6G base stations will have limited
communication ranges, more base stations will be
deployed. With enhanced chip technology, these base
stations will also be capable of handling greater
computational loads, thereby further enhancing edge
computing capabilities. This allows for more Al-driven
functionalities, such as intelligent operations and
environmental awareness. For instance, the base
station could adjust signal transmission frequencies
and directions based on user location sensing,
providing higher-quality network service (a technology
also often discussed in the integrated sensing and
communication field [11, 21]). Additionally, base
stations may support more edge services.



6.3.2 Mutual Influence: 6G and Edge Computing

Considering the scope of this book, our focus on 6G
primarily revolves around its functionalities and the
technologies related to edge computing and artificial
intelligence. Currently, the roles of these two technologies
in 6G are widely recognized. For example, organizations
such as 3GPP, IEEE, ETSI, and ITU have all proposed
integrating edge computing to achieve 6G in their
respective standardization of 6G network
architecture/frameworks.

Edge computing, in this context, operates on two levels. At
the infrastructure layer, base stations can provide greater
computational power, supporting both their own operations
and Al-driven wireless communication optimization.
Additionally, due to the flexibility of edge computing, it can
better coordinate the functions of different base stations
and offer personalized Al services. At the application layer,
more computational power can be allocated to edge
services, enabling a broader range of edge services.

Moreover, the relatively interference-free nature of

100 GHz to 3 THz signals, combined with the smaller
coverage area of individual base stations and the lower
number of users that need to be served, allows users to
experience higher bandwidth and lower latency. These
factors collectively enhance the enabling role of edge
computing. The strengthening of edge services, in turn,
positively impacts the 6G user experience, creating a
synergistic relationship that fosters further development. In
Sections 6.3.2.1 and 6.3.2.2, we will elaborate on the
influence of edge computing on 6G and the opportunities
that 6G presents for edge computing.



6.3.2.1 Edge Computing-Enabled 6G

As aforementioned, edge computing technology primarily
serves as an enabler of foundational computational power
in 6G scenarios. Current research indicates that,
particularly during the 5G era, some studies have already
explored edge computing-enabled 5G networks, utilizing
network slicing optimization to enhance service quality. In
6G, this optimization of network slicing is further
enhanced, gradually evolving into edge intelligence-
enabled network slicing optimization. Additionally, 6G
introduces the ability to sense user location and even user
posture through communication signals, a capability made
possible by edge intelligence. We will discuss these two
topics, focusing on the role of edge computing, particularly
edge intelligence, in these areas.

Network Slicing Optimization Network slicing
technology is regarded as a key enabler for service
optimization in 6G systems. It allows multiple virtual
subnetworks to be created on a single physical
communication infrastructure, each tailored for different
quality of service (QoS) requirements, thereby enhancing
the user experience. This technology acts as the role of a
traffic controller, directing certain types of data traffic to
take the high-speed route directly to the core network
while other data traffic takes a regular route. It is clear
that the traffic controller must be positioned at the
beginning of the network for optimal efficiency, which is
why network slicing naturally benefits from edge
computing technology. Moreover, deploying caching
resources at base stations can further accelerate data
retrieval for wireless network users, thereby improving
service quality.

Ye et al. [46] proposed a network slicing optimization
architecture for 6G systems, enabled by mobile edge



computing (MEC), as shown in Figure 6.4. In this
architecture, the access point (AP) is connected to a
dedicated edge distributed unit, enabling the
decentralization of edge computing capabilities. The user-
centric distributed unit primarily provides data caching
functions and some collaborative computing capabilities.
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Figure 6.4 A hierarchical network slicing architecture.
Source: Ye et al. [46]/IEEE.

In their architecture, edge computing is utilized for the
joint allocation of communication, computation, and
caching resources at different granularities to meet the
demands of various latency-sensitive applications. The
approach first uses conventional optimization algorithms to
determine the optimal allocation and placement of
computing resources, followed by the application of
multiagent deep reinforcement learning to solve problems
and strategies that traditional optimization algorithms may
struggle to address efficiently.

Reconfigurable Intelligent Surfaces The core idea
behind reconfigurable intelligent surfaces (RIS) is to use
passive elements to manipulate the scattering properties of
6G electromagnetic waves [32], thereby enhancing the



quality of wireless communication. This technology is
considered a key communication technology in 6G. Due to
its controllable nature—specifically, the ability to enhance
signals at certain locations—RIS can be used to provide
precise wireless services to individual users in 6G
networks. However, delivering such precise services is no
easy task. First, the base station must know the user's
location; only then can it control its elements to facilitate
communication. In this process, artificial intelligence
methods are needed to process weak wireless
communication signals to determine the user's location,
followed by algorithms that adjust the RIS accordingly. As
previously mentioned, edge computing plays a crucial role
by first enabling the base station with sufficient
computational power and then integrating with Al
algorithms. Tang et al. [32] and Mukherjee et al. [24] have
both made preliminary attempts at the above process in
their work. Their results indicate that the use of edge
computing can reduce the latency associated with RIS
adjustments, thereby improving service quality.

Of course, aside from the aforementioned features, there
are many other 6G functionalities that can benefit from
edge computing. Overall, edge computing can be seen as
providing a foundational layer of computational power to
6G base stations. For example, Bell Labs has proposed a
new network architecture concept of radio access network
(RAN)-Core integration [35], which unifies parts of the
RAN architecture with parts of the core network into a
single entity. This approach reduces network complexity
and enhances the scalability of network elements and base
stations. In this example, the base station can form a cloud-
edge collaborative system with the core network, providing
greater computational power that supports more Al
applications, thereby enhancing the Al-enabled capabilities
of 6G.



6.3.2.2 6G-Supported Edge Computing

In Section 6.3.2.1, we mainly discussed how edge
computing supports the computational power requirements
of the 6G network architecture itself. In this section, we
will focus on some applications that integrate edge
computing in 6G scenarios. However, since 6G is still in the
research phase, actual applications are not yet available.
Most of the research is still theoretical, focusing on issues
such as the placement of various computational resources.
Since this technology has been extensively discussed in
Chapter 3, this section will provide a brief introduction,
primarily highlighting specific works as examples.

Given the shorter communication distances of 6G,
deploying a one-to-one edge server for every 6G base
station would be prohibitively expensive. Considering also
the reduced cost of data migration in 6G networks (due to
higher data transmission speeds), Cong et al. [G6] proposed
the EdgeGo resource sharing framework for 6G edge
computing. In their architecture, edge servers are divided
into stationary and mobile types. Stationary servers handle
strict real-time tasks, while mobile servers can be used to
process non-real-time data or temporarily enhance the
capabilities of stationary servers. Thanks to the presence of
mobile edge servers, EdgeGo decouples task offloading and
execution, allowing mobile edge servers not to remain fixed
in one location upon receiving tasks. Instead, they can
continue moving and manage the processing results from
another transmission path, significantly enhancing mobility
and the framework's flexibility, benefiting from the
inherent flexibility of 6G networks. Finally, EdgeGo
integrates a two-tier iterative optimization algorithm to
coordinate optimal solutions for transmission paths and
computing task offloading.



Similarly, Huang et al. [13] have conducted research on
task scheduling for real-time applications enabled by 6G in
edge computing environments. Their work explores task
scheduling under the new 6G network architecture. As
illustrated in Figure 6.5, which represents their proposed
architecture, their scheduling algorithm primarily relies on
reinforcement learning to quickly solve Markov decision
processes. To ensure the accuracy of the scheduling, they
adopt edge learning, where the training of the
reinforcement learning model is carried out on edge
servers, and the inference process is conducted on the
devices.
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Figure 6.5 Architecture of multi-access edge learning-
based offloading (MELO). The data that flow in the MEC
system include: (1) environment states; (2) training
samples; (3) offloading policy; (4) periodic jobs; (5)
sporadic jobs; (6) periodic jobs from other mobile devices;
and (7) parameters of edge actor network.

Source: Huang et al. [13]/IEEE.

Based on the work discussed above, it is not difficult to see
that since 6G networks are still in the pre-research stage,
many system-level tasks have yet to be initiated. The
primary focus at this point is on task offloading and
scheduling. However, whether from the perspective of
standards or expert opinions, edge computing is certain to
be one of the key enabling technologies in the 6G era,
playing a pivotal role and demonstrating its potential in 6G
applications.

6.3.3 Potential Applications and Challenges

6G is considered to have potential applications across
various fields due to its higher bandwidth and lower



latency.

« Cloud-based virtual reality: Cloud-based virtual
reality (VR) is often mentioned as a key application
scenario for 6G in the future. Virtual reality technology
requires the transmission of vast amounts of data, such
as rendering data, texture data, and more. While some
manufacturers have already achieved cloud-based
virtual reality under 5G, its functionality remains
limited and the related technology has not yet been
fully realized. 6G, on the other hand, can provide
greater bandwidth on the terminal side than 5G,
allowing for faster delivery of various types of data,
thereby enhancing the user experience. Additionally,
cloud computing enables the sharing of computational
power, reducing the computing load on terminal
devices. This, in turn, lowers the performance
requirements for these devices, allowing for lighter and
more portable terminals. Similarly, virtual reality can
also be used to deliver holographic video, empowering
vertical scenarios like smart healthcare. Of course,
edge computing can also bring benefits to cloud-based
virtual reality technologies. For example, abundant
edge computing resources can be leveraged to provide
localized cloud-based VR services, delivering lower
latency and further improving the user experience.

« Communication sensing and digital twin: The
unique channels in 6G enable electromagnetic wave-
based positioning and motion sensing of the
surrounding environment, a concept previously
mentioned as the integration of communication and
sensing. As precision sensing technologies mature, the
next step is to conduct sensing and modeling of specific
scenarios as needed, without the need for additional
equipment. For instance, 6G technology can be



employed in digital factories for modeling, intelligently
sensing various machines and manufacturing
processes, and, when combined with digital twin
technology, achieving a digitalized smart factory. On
one hand, this can be used to predict potential faults
and accidents in advance. On the other hand, it can
also support technological upgrades like Industry 5.0.
Additionally, precise digital twins are considered to be
the foundation for technologies like flexible
manufacturing.

Although 6G holds great potential for a wide range of
applications, from a practical standpoint, it will still take
considerable time before final standards are established
and large-scale implementation is achieved. Similar to
many frontier technologies, 6G is currently still in the pre-
research phase, meaning that there are few usable systems
available for testing and research. However, we can take
advantage of this pre-research period to envision the future
and explore potential implementations in 6G. Specifically,
there are still many open questions surrounding 6G and
edge computing that need to be addressed.

« While intelligent, self-evolving 6G is undoubtedly the
trend, the question of how to implement it remains.
Specifically, how to deploy significant computational
power at base stations, coordinate it across the entire
network, and address future potential applications are
all factors that will influence this trend. From a systems
perspective, how to build a robust, flexible, and
scalable architecture, and incorporate it into the
relevant standards, in order to provide a degree of
flexibility during the initial stages of 6G—enabling it to
adapt to rapidly changing future applications—remains
an open question. This presents significant challenges
for system research.



« While the integration of communication and sensing
has inspired many applications, the technology has a
dual nature. Sensing the surrounding environment
inevitably raises concerns about user privacy.
Therefore, another open question is how to address
privacy protection at the technical level in order to
advance communication-sensing integrated
technologies.

6.4 Edge Computing in Space
Exploration

With the development of various nanosatellite technologies
in recent years, orbital edge computing (OEC) has
gradually emerged as a means to enhance the flexibility of
satellite data processing. OEC is also an exploration of
edge computing in the context of space exploration. This
section will elaborate on the basic concepts, typical
systems, applications, and challenges associated with OEC.

6.4.1 Basic Concepts

Traditional satellites primarily function by relaying signals
from ground stations, enabling long-distance data
transmission, or by collecting observational data from
space and sending it back to Earth. A commonly used
technology in this context is the bent-pipe satellite
transponder. The bent-pipe is a core component of
communication satellites, primarily serving as an
intermediary for data transmission, facilitating signal
switching between uplink and downlink. In simpler terms,
it forwards data from one side to the other, enabling
communication between satellites and ground stations. The
performance parameters of the bent-pipe transponder
directly influence the overall performance of satellite
communication systems. Therefore, traditional satellites



have relatively weak data-processing capabilities and
mainly function as switches or sensors.

Satellites are classified by their orbital heights into low
Earth orbit (LEO), highly elliptical orbit (HEO), middle
Earth orbit (MEO), and geostationary orbit (GEO).

Table 6.3 from [41] provides the characteristics of satellites
in different orbits, including altitude, period, and so on. In
recent years, with the development of LEO technologies,
especially with the introduction of StarLink, LEO satellites
have gradually come into public focus. Currently,
thousands of LEO satellites have been launched globally.
These satellites are capable of providing around-the-clock
network services to most regions worldwide, which has
spurred interest in OEC.



Table 6.3 Comparison of satellites in different orbit.

Source: Data from Wu et al. [41].

LEO HEO MEO GEO
Altitude 300- 600- 8000- 35,786 km
1500 km 40,000 km 20,000 km
Period 1.4-2.5h 12 h 6-12 h 24 h
Num. of 24,000 4-8 8-16 3-4
satellites a
constellation
Coverage Global High Global Global
latitude (except
areas polar
regions)
Latency 5-35 ms 150-250 ms 50- 270 ms
100 ms
Pass About 4-8 h 1-2 h All the
durations 10 min time
Typical Iridium, Molniya, Odyssey Inmarsat,
constellation Starlink, Loopus, MSAT,
Kuiper, Archimedes Mobilesat
O3B

In fact, as early as 2011, the concept of satellite cloud
computing was proposed [16]. However, possibly due to the
idea being too ahead of its time and the demand not yet
being mature, it did not attract much attention. In recent
years, with the improvement in satellite capabilities and the
increasing amounts of data for sensing, relaying, and
transmission, people have started to consider orbital edge
computing. The goal is to use edge computing technology
to reduce the amount of data communication between
satellites and the ground, thereby enabling satellites to
serve more users [8, 27].



The first concept and architecture of OEC were proposed
by Denby and Lucia [8, 9] from Carnegie Mellon University
in 2019. The work [9] demonstrated that OEC could
improve the efficiency of remote sensing image processing
by avoiding redundant data transmission between satellites
and the ground. Today, OEC is considered a promising
technology for various applications. For instance, remote
sensing images captured by LEO satellites can be
processed directly by OEC, thus reducing the amount of
data that needs to be transmitted back to Earth.

6.4.2 Advanced Concepts and Architecture

In this section, we will further elaborate on the advantages
of OEC. We will begin with a detailed analysis of the
advantages in communication time using a case study.
Next, we will introduce the first OEC architecture, followed
by an introduction to two typical OEC models, in terms of
end-edge collaboration and edge-edge collaboration.

6.4.2.1 Advantages of Orbital Edge Computing

If orbital edge computing is successfully implemented, we
can envision satellites in space providing low-latency,
globally covered services to ground users, thereby
significantly enhancing the user experience across various
services. Specifically:

- Low latency: Satellites, especially LEO satellites, can
provide low-latency communication on a global scale.
As shown in Table 6.3, the communication latency of
LEO satellites typically ranges between 5 and 35 ms. In
addition, Bhattacherjee et al. [2] evaluated the latency
of two constellation networks, Starlink and Kuiper, and
found that most latencies were around 4 ms, with some
regions experiencing latencies between 8 and 16 ms. In
contrast, for current terrestrial wired networks, even



with CDN technology, network latency often reaches
tens to hundreds of milliseconds. For some services
without CDN acceleration, or in mobile scenarios,
network latency can extend to several hundred
milliseconds [2]. This higher latency is typically caused
by numerous routers and switches forwarding data.
However, with OEC, services are deployed directly on
the satellites, allowing users to access them directly
and avoiding multiple hops and the processing of data
packets along the way.

« Global coverage: On the other hand, OEC brings the
promise of computing to every corner of the Earth.
Traditional cloud data centers are relatively sparse on
the map, with some regions, such as South America and
Africa, having little to no presence. In contrast, there
are already thousands of LEO satellites in orbit
(SpaceX's plan is the most ambitious, with the goal of
launching 42,000 satellites). Although the computing
power of these satellites is limited, they can at least
provide basic network access and extend cloud
functionality to OEC, bringing computational resources
to regions across the globe. Therefore, OEC can offer
ubiquitous “edge computing” without the many
challenges of deploying ground infrastructure in
various locations. In this case, some cloud computing
providers have already started to follow this trend.

6.4.2.2 Typical Architectures in OEC

Based on the two advantages mentioned above, OEC shows
significant potential. On the one hand, satellites can serve
as edge nodes, processing sensing data to reduce the
amount of data that needs to be transmitted to the ground,
allowing the limited downlink bandwidth to support more
satellites. On the other hand, satellites can form a cloud
computing infrastructure or edge layer in space, providing



computational resources and offering diverse services to
users. In this subsection, we will introduce examples of
typical system architecture designs based on these two
main approaches. However, it is important to note that the
progress of OEC is still relatively slow. This is primarily due
to the challenges of constructing experimental
environments, as there are currently not many satellite
platforms available for independently developed
applications.

Computing on Satellites In the traditional model, all
satellite data is transmitted back to the ground for
computation. However, in the end-edge collaboration model
of OEC, part of the computation can be done on the
satellite, which acts as an edge node. Through coordination
between the edge nodes, the computational load on a single
satellite can be significantly reduced, as well as the amount
of data that needs to be transmitted back to Earth.

Recently, Denby and Lucia [9] designed an OEC
architecture, which can be considered the first system
architecture for OEC. This architecture primarily processes
data on satellites, allowing only partial, relevant data to be
transmitted to the ground, thereby alleviating the
bottleneck of the downlink bandwidth. Additionally, the
architecture enables the coordination of computational
tasks between different satellites, leading to more
optimized processing. To further enhance data processing,
Denby et al. [10] also proposed an architecture called
Kodan. As shown in Figure 6.6, Kodan's architecture is
designed to work in two phases: prelaunch and postlaunch.
Before launch, models can be customized based on the
satellite's hardware, processing time, location, etc. Once
deployed, the satellite uses these models to extract high-
value data from the sensed information, thereby
maximizing the use of the limited downlink capacity.
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Figure 6.6 Kodan architecture design.
Source: Denby et al. [10]/ACM, Inc.

Currently, there are many similar works. For example,
Leyva-Mayorga et al. [19] applied OEC technology in real-
time, ultra-high-resolution Earth observation applications
to reduce the cost of image transmission. In their approach,
they model the state of the downlink (such as bandwidth,
connection time, etc.) along with the requirements for
image quality and latency. Based on this model, they
propose a scheduling algorithm to determine the image
compression quality, ensuring that the transmission can
meet the downlink conditions.

Collaborative Computing The aforementioned works
primarily focus on improving data quality under limited
downlink conditions by leveraging OEC. These works
mainly consider computing on the orbit side but do not take
into account the computational needs on the end side. In
other words, the above works merely bring computation to
the edge but do not fully implement the computational path
envisioned in edge computing. Regarding edge
collaboration, there are some existing studies, but most of
them focus on resource scheduling optimization, with fewer
works addressing system-level considerations.

Given the possibility that satellites may deploy edge
services and provide computational resources to users,



Zhang et al. [50] proposed the OEC Task Allocation (OEC-
TA) algorithm. In their system model, users can upload
tasks to a satellite via a ground station. The satellite then
decomposes the tasks based on a greedy algorithm and
schedules them for collaborative processing across the
satellite constellation. The final results are sent back to the
user, thereby enabling the deployment of edge services on
orbiting satellites. Similarly, Liu et al. [22] proposed an
advanced computation scheduling algorithm for OEC. In
their system, satellites can offload computational tasks to
other satellites or to the ground. Their approach mainly
considers factors such as energy generated by solar
exposure and the energy consumption of task computation,
aiming to minimize the energy usage of satellites.

However, it is also clear that current research on OEC is
still limited at the system level. Most studies focus on
processing sensed data on the satellite edge to alleviate
downlink pressure or are more theoretical in nature.

6.4.3 Advanced Scenarios and Challenges

Current research on OEC has made some progress,
proposing relevant architectures and applications, and
conducting modeling and analysis of scheduling issues
within the system, providing corresponding solutions.
However, certain challenges still remain. One of the
biggest problems is the lack of an easily accessible
platform for researchers to use. Nevertheless, this does not
hinder our vision for the technology. If, in the future,
satellite constellations are able to provide OEC services, as
aforementioned, OEC could leverage its advantages in low
latency and global coverage to greatly enhance our daily
lives.

« AR/VR: One of the first applications to benefit from this
would be augmented reality (AR)/VR-related



applications. Currently, our VR/AR activities are mostly
conducted on single devices, and due to the high
computational demands of AR applications, rendering
and data transmission have already introduced some
latency overhead. As a result, it is still difficult for AR
applications to support collaborative scenarios, such as
remote gatherings. As previously mentioned, in the
current Internet environment, most network
transmissions have latencies ranging from tens to
hundreds of milliseconds. This delay makes it
challenging for multiple users to share interactions
through cloud services without affecting the
experience, particularly in gaming. By offloading some
of the cloud service functions, such as interaction-
sharing services, to satellites, it would be possible to
transmit only a small amount of data while achieving
low latency—such as the 5-35 ms shown in Table 6.3.
This would greatly improve the user experience.
Similarly, AR/VR would not be limited to gaming but
could also extend to daily work activities, such as
collaborative surgeries, design discussions, and more.

Space exploration: In this section, we have discussed
how OEC applied to Earth observation can bring
numerous benefits, as demonstrated by the first OEC
project. Going further, space exploration can also
benefit from OEC. Currently, some space probes send
their data back to Earth for analysis, and raw data
inevitably consumes a significant amount of bandwidth.
Additionally, the data transmission windows for some
satellites are limited. By leveraging OEC, this data can
be distributed to other nodes in space for relaying and
processing, allowing for continuous data transmission
around the clock while reducing the volume of data
sent back, thereby addressing the downlink bandwidth
limitations.



However, there are still numerous challenges facing OEC
that require urgent research and resolution in order to fully
harness the potential of edge computing in satellite-based
computation.

« System platforms and software interfaces: The
computing environment on satellites differs from that
on the ground, and traditional cloud computing and
edge computing orchestrators cannot be directly
applied to satellites without encountering issues.
Satellites themselves are essentially systems that
integrate communication and computation, so a
specialized operating system is needed to manage
resources on such hardware systems. From a research
perspective, there is currently no universal platform or
easy-to-use simulator available for researchers, making
it difficult for most to conduct related studies.

« Resource management: While LEO satellites can
provide low-latency communication, the time they can
serve a specific region (or user) is extremely limited,
often just a matter of minutes. Although satellite
constellations can provide alternating services, this
places stringent demands on scheduling algorithms. On
the one hand, satellite positioning and user
relationships need to be modeled, and on the other
hand, modeling the airborne satellite network is
necessary to optimize scheduling. Furthermore, OEC
must offer seamless data link migration without any
user-perceived interruptions, or else the user
experience will be severely impacted.

6.5 Summary and Practice



6.5.1 Summary

Although several new computing paradigms have been
proposed in recent years, such as sky computing,
computing power network, and meta computing, they can
essentially be viewed as enhancements to edge computing
in certain aspects. In other words, they can all be
integrated with edge computing to further enhance its
capabilities. For example, sky computing emphasizes the
collaboration of heterogeneous clouds, computing power
network focuses on the synergy between edge and multi-
cloud environments, while meta computing primarily
addresses the security issues in cross-domain collaboration
within edge computing.

Next, we introduced the application of edge computing in
several emerging technologies. In the field of artificial
intelligence, edge computing can enhance the intelligence
of devices on the edge by training, inferring, and caching
large language models at the network edge. In the 6G
domain, edge computing serves as the computational
foundation of the 6G network architecture, providing a
base platform for Al technologies to achieve intelligent
signal control and network slicing. At the same time, 6G
represents a significant application scenario for edge
computing. In the field of orbital computing, some
satellites, particularly low-orbit satellites, are equipped
with limited computational capabilities, giving rise to the
emerging field of orbital edge computing. In this area, edge
computing is still in its infancy; the primary focus is on
processing data at the edge on satellites to reduce data
transmission costs and to empower space exploration.

Finally, in the emerging technologies mentioned earlier, we
also discussed several research directions that are worth
further exploration, with the hope of encouraging more
researchers to engage in systematic studies in these areas.



6.5.2 Practice Questions

1. What is the relationship between edge computing and a
new distributed computing paradigm, using one as an
example?

2. How does edge computing enhance artificial
intelligence, particularly large language model
technology?

3. What are the main characteristics of 6G, and how do
6G and edge computing technologies influence each
other?

4. Discuss the challenges and opportunities of integrating
orbital computing technology with edge computing.

6.5.3 Course Projects

1. Deploy large language models, such as Edge-LLM

(https://github.com/GATECH-EIC/Edge-LLM),
LlamaEdge

(https://github.com/IlamaEdge/llamaEdge), on
heterogeneous hardware and explore the segmentation
of specific models at different layers in an edge
computing environment, observing the changes in
transmission costs and computational costs.

2. Inspired by the concepts discussed in the paper “The
Internet of Things in the Era of Generative Al: Vision
and Challenges,” Wang et al. [40] select a specific IoT
application (e.g., smart home, healthcare monitoring,
and industrial IoT) and explore how generative Al can
be applied to enhance its functionality.

3. By leveraging open-source projects, construct scenarios
for cross-cloud and cross-domain edge collaboration.
Consider using communication networks from different
telecom operators to simulate cross-domain edge


https://github.com/GATECH-EIC/Edge-LLM
https://github.com/LlamaEdge/LlamaEdge

collaboration, and try to understand the distinctions
between sky computing, computing power network,
and meta computing in comparison to edge computing.
Recommended open-source projects include:
OpenFaaS, KubeEdge, and Kubernetes.

. Utilize the open-source project Cote

(https://github.com/CMUAbstract/cote) to explore the

principles and applications of orbital edge computing.


https://github.com/CMUAbstract/cote
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7
Case Studies and Practical

Applicationsf

Edge computing represents a significant paradigm shift in
the way data is processed, analyzed, and acted upon,
bringing computation and data storage closer to the source
of data generation. This chapter delves into an in-depth
exploration of edge computing systems through the lens of
real-world case studies across six pivotal sectors:
manufacturing, Internet of Things (IoT) retail, healthcare,
telecommunications, autonomous vehicles, and smart
cities. By examining the implementation and outcomes in
these diverse fields, we aim to illustrate the profound
impact of edge computing on operational efficiency,
decision-making, and innovation.

In the manufacturing sector, edge computing is
revolutionizing production lines, enabling predictive
maintenance, real-time quality control, and efficient
resource management. By processing data at the edge,
manufacturers can reduce downtime, enhance productivity,
and ensure higher standards of product quality. The
deployment of edge computing in smart factories
exemplifies how leveraging real-time data can lead to
substantial cost savings and improved operational
resilience [32].

IoT significantly benefits from edge computing by
enhancing real-time data processing, reducing latency, and
improving overall system efficiency. In IoT ecosystems, vast
amounts of data are generated by numerous connected
devices, often requiring immediate analysis and response.
Edge computing addresses this need by processing data



closer to the source, minimizing the delay caused by data
transmission to centralized cloud servers. This proximity to
data sources not only reduces network congestion but also
ensures faster decision-making and more timely actions,
which are critical in applications such as autonomous
vehicles, industrial automation, and healthcare monitoring.
Additionally, edge computing enhances data security and
privacy by limiting the exposure of sensitive information to
potential vulnerabilities associated with cloud storage and
transmission. By decentralizing data processing and
bringing computational power closer to IoT devices, edge
computing enables more robust, scalable, and responsive
IoT solutions [5].

Retail, on the other hand, benefits from edge computing by
enhancing customer experiences through personalized
services and smarter inventory management. By analyzing
data locally, retailers can offer customized promotions,
optimize supply chains, and respond swiftly to market
trends. The primary problem is the increasing data volume
from IoT devices, which creates challenges in managing,
analyzing, and utilizing data in real-time, especially for
brick-and-mortar stores competing with online retailers.
Key challenges include ensuring low latency, managing
computational load, and integrating various IoT
technologies effectively [8].

Healthcare stands to gain immensely from edge computing,
particularly in the realms of patient monitoring,
diagnostics, and treatment. Edge computing allows for real-
time processing of medical data from wearable devices,
facilitating timely interventions and personalized care. In
this chapter, we will examine case studies demonstrating
how edge computing supports advanced healthcare
applications, from remote patient monitoring to enhanced
medical imaging, ultimately leading to better patient



outcomes and more efficient healthcare delivery systems
[15, 38].

The telecommunications industry is at the forefront of edge
computing adoption, driven by the need to support the
ever-growing demand for bandwidth and low-latency
services. Edge computing plays a crucial role in optimizing
network performance, enabling the deployment of 5G
networks, and supporting emerging applications such as
augmented reality (AR) and virtual reality (VR). Through
detailed case studies, we will uncover how
telecommunications companies leverage edge computing to
enhance service delivery, improve network efficiency, and
drive innovation in communication technologies [51]. A
summary of potential edge computing applications can be
summarized in Figure 7.1.

Autonomous vehicles represent a cutting-edge application
of edge computing, where the need for real-time data
processing is paramount. Edge computing enables
autonomous vehicles to make real-time decisions based on
local data, ensuring safety and reliability. Challenges
include ensuring low-latency data processing, maintaining
energy efficiency, and securing the system against
potential attacks across various layers. Edge computing
systems can be used to handle the intensive computational
tasks locally, reducing the dependency on centralized cloud
infrastructure. Additionally, vehicle-to-everything (V2X)
communication is highlighted as a critical technology for
providing redundancy and alleviating computational load,
thereby enhancing the overall reliability and safety of
autonomous driving systems [25, 28].
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Figure 7.1 A taxonomy of edge computing applications.
Source: Zhao et al. [51]/IEEE.

Lastly, smart cities epitomize the transformative potential
of edge computing on urban living. By deploying edge
computing systems, cities can manage resources more
effectively, enhance public safety, and improve the quality
of life for their inhabitants. From intelligent traffic
management to smart energy grids, this chapter will
explore how edge computing facilitates the creation of
more sustainable and livable urban environments [3, 14,
20, 34, 40].

Through these comprehensive case studies, this chapter
aims to provide a thorough understanding of how edge
computing is being implemented across various industries.
We will analyze the challenges faced, solutions devised,
and the tangible benefits realized by each sector. By
bridging the gap between theoretical concepts and
practical applications, this chapter serves as a crucial
resource for understanding the role of edge computing in



driving forward technological advancements and shaping
the future of these critical domains [16].

7.1 Manufacturing

Edge computing significantly enhances the manufacturing
sector by improving efficiency, reducing latency, and
enabling real-time data processing. By processing data
closer to the source, manufacturers can achieve rapid and
autonomous decision-making, essential for intelligent
manufacturing systems. This approach facilitates predictive
maintenance, timely detection and response to production
anomalies, and real-time quality control, leading to reduced
downtime and increased productivity. Additionally, edge
computing optimizes resource management and bandwidth
usage, ensuring higher standards of product quality and
operational resilience. Despite challenges like middleware
flexibility and managing diverse communication protocols,
edge computing provides the agility, security, and
responsiveness needed for modern, IoT-based
manufacturing environments.

The paper “Edge Computing in IoT-Based Manufacturing”
by Baotong Chen et al. [11] (as shown in Figure 7.2)
explores the pivotal role of edge computing in enhancing
operational efficiency, reducing latency, and enabling real-
time data processing in the manufacturing sector. Edge
computing shifts computation closer to data sources, which
is critical for intelligent manufacturing systems requiring
rapid and autonomous decision-making. The proposed
architecture encompasses four domains: devices (sensors,
robots), network (software-defined networking [SDN] and
time-sensitive networking [TSN] for real-time data flow),
data (cleaning, feature extraction), and applications
(intelligent process management). A case study on active
maintenance in a smart factory revealed that edge



computing significantly improved efficiency, agility, and
reduced network load by 60%, showcasing its potential for
business agility and bandwidth optimization. Despite its
benefits, challenges such as the need for flexible
middleware, managing diverse communication protocols,
and ensuring real-time processing with security remain.
Overall, edge computing is essential for advancing IoT-
based manufacturing, supporting the development of
responsive and resilient industrial systems by providing
enhanced agility, security, and real-time processing
capabilities.

Edge computing
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Figure 7.2 Edge computing in manufacturing.
Source: Chen et al. [11]/IEEE.

The paper titled “Edge Computing Enabled Production
Anomalies Detection and Energy-Efficient Production
Decision Approach for Discrete Manufacturing Workshops”
[49] addresses the complexities and dynamics of modern



manufacturing processes, which frequently experience
production anomalies such as spindle failure and cutting
tool wear. These anomalies significantly impact
manufacturing quality and productivity. The main challenge
lies in the timely detection and response to these anomalies
amidst the rapid development and data proliferation driven
by IoT technologies. To tackle this, the paper proposes an
innovative approach leveraging edge computing. The
solution introduces a three-layer architecture for anomaly
detection and energy-efficient production decisions, using
an energy consumption data preprocessing algorithm and a
production anomaly analysis model based on a long short-
term memory (LSTM) network. This framework ensures
real-time data processing, reduces latency, and supports
energy-efficient decision-making when anomalies are
detected. The proposed method demonstrates a high
detection accuracy with an anomaly detection error of only
3.5%, proving its effectiveness in enhancing production
process monitoring and energy conservation in a discrete
manufacturing workshop.

The paper titled “Edge Computing in Smart Production” by
Jumyung Um et al. [43] explores the implementation of
edge computing within Cyber-Physical Production Systems
to enhance flexibility and efficiency in smart
manufacturing. The main problem addressed is the
synchronization between digital models and physical
objects, and the application of decision-making within these
models, which is often hindered by unstable cloud
connections and high latency. The challenges lie in
managing the vast amounts of data generated by
manufacturing processes, ensuring real-time response, and
maintaining system reliability despite limited computing
resources at the edge. The proposed solution involves an
edge computing architecture that acts as an intermediary
between machines, offering local cloud services with fast



response times and preprocessing capabilities. This
architecture supports real-time data processing and
human-machine interaction, demonstrated through the
preprocessing of data from AR devices to facilitate real-
time communication with the cyber-model. The edge
platform effectively manages computing resources and
prioritizes processes, enabling dynamic updates to
production lines and improving the overall efficiency and
responsiveness of smart production environments.

In 2023, Yu et al.'s paper “Edge Computing-Assisted IoT
Framework with an Autoencoder for Fault Detection in
Manufacturing Predictive Maintenance” [48] addresses the
urgent need for real-time, intelligent predictive
maintenance in industrial manufacturing, which requires
low latency responses to alarms. Traditional cloud-based
IoT frameworks suffer from high latency and network
congestion issues. The proposed solution integrates edge
computing to decentralize data processing, reduce network
pressure, and protect user privacy while optimizing cloud
costs and resources. The framework introduces an
autoencoder-based deep learning method for more
accurate fault detection, implemented within a three-layer
architecture consisting of edge, cloud, and application
layers. This architecture facilitates real-time data ingestion,
preprocessing, and analysis, enabling timely responses to
maintenance needs. A distributed stacked sparse
autoencoder is employed to handle the complex, nonlinear
relationships between sensors, providing robust fault
detection in a real-time, distributed manner. This approach
significantly reduces system response time and enhances
the performance and efficiency of the predictive
maintenance ecosystem, making it a practical and scalable
solution for smart manufacturing.



7.2 Telecommunications

Edge computing greatly benefits the telecommunications
industry by improving performance metrics and reducing
costs. It enhances throughput, reduces latency, and
improves video delay by distributing applications and
content closer to end-users, thus minimizing network
congestion and enhancing Quality of Experience (QoE).
This approach also reduces the total cost of ownership
(TCO) by offloading peak traffic from the core network to
edge nodes. Additionally, integrating edge computing with
ultra-reliable low-latency communication (URLLC)
addresses the high latency and reliability challenges of
centralized cloud computing. It supports mission-critical
applications like VR, V2X, and edge artificial intelligence
(AD) by bringing computational resources closer to network
nodes. This ensures timely and reliable data processing,
leveraging technologies like high-capacity millimeter-wave
links, proximity-based computing, and edge machine
learning to meet stringent latency and reliability
requirements. Overall, edge computing is crucial for
advancing telecommunications infrastructure, optimizing
network performance, and enabling new services.

The paper “Edge Cloud Computing in Telecommunications:
Case Studies on Performance Improvement and TCO
Saving” [12] (as shown in Figure 7.3) discusses the
implementation and benefits of Edge Cloud Computing
(ECC) in telecommunications networks. ECC is becoming
crucial as new services like 4K/8K video streaming, 360-
degree augmented/VR, and autonomous driving demand
stringent key performance indicators (KPIs) and lower
TCO. The paper provides several case studies
demonstrating how ECC can improve KPIs such as
throughput, latency, and video delay, by distributing
applications and content closer to end-users, thus reducing



network congestion and enhancing QoE. Additionally, ECC
helps in reducing TCO by offloading peak traffic from the
core network to edge nodes, leading to cost savings. The
paper concludes that the strategic deployment of ECC can
effectively address both performance and cost issues in
traditional and emerging broadband networks, marking a
significant step forward for telecommunications
infrastructure.
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Figure 7.3 Edge computing in telecommunications.
Source: Ciccarella et al. [12]/IEEE.

The paper “Wireless Edge Comput<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>